Cantitate/Preț
Produs

Geometric Analysis of Hyperbolic Differential Equations: An Introduction: London Mathematical Society Lecture Note Series, cartea 374

Autor S. Alinhac
en Limba Engleză Paperback – 19 mai 2010
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 44562 lei

Nou

Puncte Express: 668

Preț estimativ în valută:
8528 8880$ 7207£

Carte tipărită la comandă

Livrare economică 10-24 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521128223
ISBN-10: 0521128226
Pagini: 130
Dimensiuni: 152 x 229 x 7 mm
Greutate: 0.18 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:Cambridge, United Kingdom

Cuprins

Preface; 1. Introduction; 2. Metrics and frames; 3. Computing with frames; 4. Energy inequalities and frames; 5. The good components; 6. Pointwise estimates and commutations; 7. Frames and curvature; 8. Nonlinear equations, a priori estimates and induction; 9. Applications to some quasilinear hyperbolic problems; References; Index.

Recenzii

'This book provides an excellent introduction to nonlinear wave equations, and it can be recommended to anyone who wants to access the recent mathematical literature on this subject.' Zentralblatt MATH

Notă biografică


Descriere

A self-contained presentation of the tools of Lorentzian geometry necessary to access recent works in mathematical relativity.