Cantitate/Preț
Produs

Geometric Function Theory in One and Higher Dimensions

Autor Ian Graham, Gabriela Kohr
en Limba Engleză Paperback – 5 sep 2019
This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the infinite-dimensional theory and provides numerous exercises in each chapter for further study. The authors present such topics as linear invariance in the unit disc, Bloch functions and the Bloch constant, and growth, covering and distortion results for starlike and convex mappings in Cn and complex Banach spaces.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 51044 lei  6-8 săpt.
  CRC Press – 5 sep 2019 51044 lei  6-8 săpt.
Hardback (1) 128674 lei  6-8 săpt.
  CRC Press – 18 mar 2003 128674 lei  6-8 săpt.

Preț: 51044 lei

Preț vechi: 60052 lei
-15% Nou

Puncte Express: 766

Preț estimativ în valută:
9770 10068$ 8248£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367395339
ISBN-10: 0367395339
Pagini: 560
Dimensiuni: 152 x 229 x 30 mm
Greutate: 1.04 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press

Public țintă

Professional Practice & Development

Cuprins

Preface, Introduction, Part I Univalent functions, Part II Univalent mappings in several complex variables and complex Banach spaces, Bibliography, List of Symbols, Index

Descriere

This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Carath\'eodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the infinite-dimensional theory and provides numerous exercises in each chapter for further study. The authors present such topics as linear invariance in the unit disc, Bloch functions and the Bloch constant, and growth, covering and distortion results for starlike and convex mappings in Cn and complex Banach spaces.