Geometry of Defining Relations in Groups: Mathematics and its Applications, cartea 70
Autor A.Yu. Ol'shanskiien Limba Engleză Paperback – 17 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 710.14 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 17 oct 2012 | 710.14 lei 6-8 săpt. | |
Hardback (1) | 663.01 lei 38-45 zile | |
SPRINGER NETHERLANDS – 31 oct 1991 | 663.01 lei 38-45 zile |
Din seria Mathematics and its Applications
- 26% Preț: 732.67 lei
- 26% Preț: 709.66 lei
- 26% Preț: 764.91 lei
- 13% Preț: 310.16 lei
- 26% Preț: 869.13 lei
- 23% Preț: 313.98 lei
- 13% Preț: 308.86 lei
- 22% Preț: 331.21 lei
- 13% Preț: 349.90 lei
- 13% Preț: 310.26 lei
- 22% Preț: 347.24 lei
- 31% Preț: 262.68 lei
- 22% Preț: 319.71 lei
- 14% Preț: 306.51 lei
- 26% Preț: 906.52 lei
- Preț: 378.20 lei
- 15% Preț: 627.03 lei
- 15% Preț: 618.53 lei
- 15% Preț: 623.11 lei
- 15% Preț: 623.11 lei
- Preț: 374.86 lei
- Preț: 379.30 lei
- 15% Preț: 627.52 lei
- 20% Preț: 626.91 lei
- 15% Preț: 625.61 lei
- Preț: 368.00 lei
- Preț: 378.20 lei
- 15% Preț: 632.54 lei
- 15% Preț: 633.48 lei
- Preț: 376.33 lei
- Preț: 379.47 lei
Preț: 710.14 lei
Preț vechi: 866.02 lei
-18% Nou
Puncte Express: 1065
Preț estimativ în valută:
135.92€ • 142.90$ • 113.05£
135.92€ • 142.90$ • 113.05£
Carte tipărită la comandă
Livrare economică 27 decembrie 24 - 10 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401056052
ISBN-10: 9401056056
Pagini: 536
Ilustrații: XXVI, 505 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.74 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401056056
Pagini: 536
Ilustrații: XXVI, 505 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.74 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 General concepts of group theory.- §1 Definition and examples of groups.- §2 Cyclic groups and subgroups. Generators.- §3 Cosets. Factor groups. Homomorphisms.- §4 Relations in groups and free groups.- 2 Main types of groups and subgroups.- §5 p-subgroups in finite and abelian groups.- §6 Soluble groups. Laws.- §7 Finiteness conditions in groups.- 3 Elements of two-dimensional topology.- §8 Toplogical spaces.- §9 Surfaces and their cell decomposition.- §10 Topological invariants of surfaces.- 4 Diagrams over groups.- §11 Visual interpretation of the deduction of consequences of defining relations.- §12 Small cancellation theory.- §13 Graded diagrams.- 5 A-maps.- §14 Contiguity submaps.- §15 Conditions on the grading.- §16 Exterior arcs and ?-cells.- §17 Paths that are nearly geodesic and cuts on A-maps.- 6 Relations in periodic groups.- §18 Free Burnside groups of large odd exponent.- §19 Diagrams as A-maps. Properties of B(A, n).- 7 Maps with partitioned boundaries of cells.- §20 Estimating graphs for B-maps.- §21 Contiguity and weights in B-maps.- §22 Existence of ?-cells and its consequences.- §23 C-maps.- §24 Other conditions on the partition of the boundary of a map.- 8 Partitions of relators.- §25 General approach to presenting the groups G(i) and properties of these groups.- §26 Inductive step to G(i+ 1). The group G(?).- 9 Construction of groups with prescribed properties.- §27 Constructing groups with subgroups of bounded order.- §28 Groups with all subgroups cyclic.- §29 Group laws other than powers.- §30 Varieties in which all finite groups are abelian.- 10 Extensions of aspherical groups.- §31 Central extensions.- §32 Abelian extensions and dependence among relations.- 11 Presentations in free products.- §33Cancellation diagrams over free products.- §34 Presentations with condition R.- §35 Embedding theorems for groups.- §36 Operations on groups.- 12 Applications to other problems.- §37 Growth functions of groups and their presentations.- §38 On group rings of Noetherian groups.- §39 Further applications of the method.- 13 Conjugacy relations.- §40 Conjugacy cells.- §41 Finitely generated divisible groups.- Some notation.- Author Index.