Ginzburg-Landau Phase Transition Theory and Superconductivity: International Series of Numerical Mathematics, cartea 134
Autor K.-H. Hoffmann, Q. Tangen Limba Engleză Paperback – 23 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 632.55 lei 43-57 zile | |
Birkhäuser Basel – 23 oct 2012 | 632.55 lei 43-57 zile | |
Hardback (1) | 638.82 lei 43-57 zile | |
Birkhäuser Basel – dec 2000 | 638.82 lei 43-57 zile |
Din seria International Series of Numerical Mathematics
- 5% Preț: 638.70 lei
- Preț: 403.63 lei
- Preț: 391.09 lei
- Preț: 357.07 lei
- Preț: 379.22 lei
- Preț: 375.26 lei
- Preț: 416.54 lei
- Preț: 385.44 lei
- Preț: 384.86 lei
- 15% Preț: 576.77 lei
- 15% Preț: 576.44 lei
- Preț: 384.70 lei
- Preț: 387.31 lei
- 15% Preț: 577.41 lei
- Preț: 384.70 lei
- Preț: 450.50 lei
- Preț: 382.79 lei
- 15% Preț: 575.63 lei
- Preț: 384.33 lei
- Preț: 389.39 lei
- 15% Preț: 634.18 lei
- 15% Preț: 569.87 lei
- Preț: 389.39 lei
- 15% Preț: 579.80 lei
- Preț: 387.52 lei
- 15% Preț: 577.90 lei
- Preț: 385.25 lei
- Preț: 390.73 lei
- Preț: 399.96 lei
- Preț: 340.45 lei
- 15% Preț: 637.71 lei
- 15% Preț: 632.24 lei
- Preț: 388.66 lei
- 15% Preț: 639.63 lei
- 15% Preț: 579.34 lei
- Preț: 382.79 lei
- 15% Preț: 634.96 lei
- Preț: 380.33 lei
- 15% Preț: 625.84 lei
Preț: 632.55 lei
Preț vechi: 744.18 lei
-15% Nou
Puncte Express: 949
Preț estimativ în valută:
121.06€ • 125.75$ • 100.56£
121.06€ • 125.75$ • 100.56£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034894999
ISBN-10: 3034894996
Pagini: 400
Ilustrații: XII, 384 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.56 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria International Series of Numerical Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3034894996
Pagini: 400
Ilustrații: XII, 384 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.56 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria International Series of Numerical Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Brief history.- 1.2 The G-L phenomenological theory.- 1.3 Some considerations arising from scaling.- 1.4 The evolutionary G-L system – 2-d case.- 1.5 Exterior evolutionary Maxwell system.- 1.6 Exterior steady-state Maxwell system.- 1.7 Surface energy, superconductor classification.- 1.8 Difference between 2-d and 3-d models.- 1.9 Bibliographical remarks.- 2 Mathematical Foundation.- 2.1 Co-dimension one phase transition problems.- 2.2 Co-dimension two phase transition problems.- 2.3 Mathematical description of vortices in ?2.- 2.4 Asymptotic methods for describing vortices in ?2.- 2.5 Asymptotic methods for describing vortices in ?3.- 2.6 Bibliographical remarks.- 3 Asymptotics Involving Magnetic Potential.- 3.1 Basic facts concerning fluid vortices.- 3.2 Asymptotic analysis.- 3.3 Asymptotic analysis of densely packed vortices.- 3.4 Bibliographical remarks.- 4 Steady State Solutions.- 4.1 Existence of steady state solutions.- 4.2 Stability and mapping properties of solutions.- 4.3 Co-dimension two vortex domain.- 4.4 Breakdown of superconductivity.- 4.5 A linearized problem.- 4.6 Bibliographical remarks.- 5 Evolutionary Solutions.- 5.1 2-d solutions with given external field.- 5.2 Existence of 3-d evolutionary solutions.- 5.3 The existence of an ?-limit set as t ? ?.- 5.4 An abstract theorem on global attractors.- 5.5 Global atractor for the G-L sstem.- 5.6 Physical bounds on the global attractor.- 5.7 The uniqueness of the long time limit of the evolutionary G-L so-lutions.- 5.8 Bibliographical remarks.- 6 Complex G-L Type Phase Transition Theory.- 6.1 Existence and basic properties of solutions.- 6.2 BBH type upper bound for energy of minimizers.- 6.3 Global estimates.- 6.4 Local estimates.- 6.5 The behaviour of solutions nearvortices.- 6.6 Global ?-independent estimates.- 6.7 Convergence of the solutions as ? ? 0.- 6.8 Main results on the limit functions.- 6.9 Renormalized energies.- 6.10 Bibliographical remarks.- 7 The Slow Motion of Vortices.- 7.1 Introduction.- 7.2 Preliminaries.- 7.3 Estimates from below for the mobilities.- 7.4 Estimates from above for the mobilities.- 7.5 Bibliographical remarks.- 8 Thin Plate/Film G-L Models.- 8.1 The outside Maxwell system – steady state case.- 8.2 The outside field is given – evolutionary case.- 8.3 The outside field is given – formal analysis.- 8.4 Bibliographical remarks.- 9 Pinning Theory.- 9.1 Local Pohozaev-type identity.- 9.2 Estimate the energy of minimizers.- 9.3 Local estimates.- 9.4 Global Estimates.- 9.5 Convergence of solutions and the term $$\frac{1}{{\varepsilon ^2 }}\int_\Omega {(\left| {\psi _\varepsilon } \right|^2 - 1)^2 }$$.- 9.6 Properties of ?*, A*.- 9.7 Renormalized energy.- 9.8 Pinning of vortices in other circumstances.- 9.9 Bibliographical remarks.- 10 Numerical Analysis.- 10.1 Introduction.- 10.2 Discretization.- 10.3 Stability estimates.- 10.4 Error estimates.- 10.5 A numerical example.- 10.6 Discretization using variable step length.- 10.7 A dual problem.- 10.8 A posteriori error analysis.- 10.9 Numerical implementation.- 10.10 Bibliographical remarks.- References.