Cantitate/Preț
Produs

Gromov’s Compactness Theorem for Pseudo-holomorphic Curves: Progress in Mathematics, cartea 151

Autor Christoph Hummel
en Limba Engleză Hardback – mai 1997
Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 36889 lei  6-8 săpt.
  Birkhäuser Basel – 15 oct 2012 36889 lei  6-8 săpt.
Hardback (1) 37582 lei  6-8 săpt.
  Birkhäuser Basel – mai 1997 37582 lei  6-8 săpt.

Din seria Progress in Mathematics

Preț: 37582 lei

Nou

Puncte Express: 564

Preț estimativ în valută:
7192 7542$ 5997£

Carte tipărită la comandă

Livrare economică 07-21 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783764357351
ISBN-10: 3764357355
Pagini: 144
Ilustrații: VIII, 135 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.39 kg
Ediția:1997
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

I Preliminaries.- 1. Riemannian manifolds.- 2. Almost complex and symplectic manifolds.- 3. J-holomorphic maps.- 4. Riemann surfaces and hyperbolic geometry.- 5. Annuli.- II Estimates for area and first derivatives.- 1. Gromov’s Schwarz- and monotonicity lemma.- 2. Area of J-holomorphic maps.- 3. Isoperimetric inequalities for J-holomorphic maps.- 4. Proof of the Gromov-Schwarz lemma.- III Higher order derivatives.- 1. 1-jets of J-holomorphic maps.- 2. Removal of singularities.- 3. Converging sequences of J-holomorphic maps.- 4. Variable almost complex structures.- IV Hyperbolic surfaces.- 1. Hexagons.- 2. Building hyperbolic surfaces from pairs of pants.- 3. Pairs of pants decomposition.- 4. Thick-thin decomposition.- 5. Compactness properties of hyperbolic structures.- V The compactness theorem.- 1. Cusp curves.- 2. Proof of the compactness theorem.- 3. Bubbles.- VI The squeezing theorem.- 1. Discussion of the statement.- 2. Proof modulo existence result for pseudo-holomorphic curves.- 3. The analytical setup: A rough outline.- 4. The required existence result.- Appendix A The classical isoperimetric inequality.- References on pseudo-holomorphic curves.

Recenzii

 
  "...the book provides a self-contained and for the most part excellent elaboration of Gromov's proof of the compactness theorem."   
  -- Mathematical Reviews