Cantitate/Preț
Produs

Haar Series and Linear Operators: Mathematics and Its Applications, cartea 367

Autor I. Novikov, E. Semenov
en Limba Engleză Hardback – 31 ian 1997
In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function.
This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems.
Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61952 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 8 dec 2010 61952 lei  6-8 săpt.
Hardback (1) 62555 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 ian 1997 62555 lei  6-8 săpt.

Din seria Mathematics and Its Applications

Preț: 62555 lei

Preț vechi: 73593 lei
-15% Nou

Puncte Express: 938

Preț estimativ în valută:
11971 12590$ 10002£

Carte tipărită la comandă

Livrare economică 09-23 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792340065
ISBN-10: 079234006X
Pagini: 224
Ilustrații: XV, 224 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.52 kg
Ediția:1996
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1. Preliminaries.- 2. Definition and Main Properties of the Haar System.- 3. Convergence of Haar Series.- 4. Basis Properties of the Haar System.- 5. The Unconditionality of the Haar System.- 6. The Paley Function.- 7. Fourier-Haar Coefficients.- 8. The Haar System and Martingales.- 9. Reproducibility of the Haar System.- 10. Generalized Haar Systems and Monotone Bases.- 11. Haar System Rearrangements.- 12. Fourier-Haar Multipliers.- 13. Pointwise Estimates of Multipliers.- 14. Estimates of Multipliers in L1.- 15. Subsequences of the Haar System.- 16. Criterion of Equivalence of the Haar and Franklin Systems in R.I. Spaces.- 17. Olevskii Systems.- References.

Recenzii

` ... this book will prove useful to the specialist. The reviewer is happy to put it on his shelf along with the other references in dyadic harmonic analysis. He plans to use it when the need arises.'
Mathematical Reviews, 98h