Cantitate/Preț
Produs

Hadronic Transport Coefficients from Effective Field Theories: Springer Theses

Autor Juan M. Torres-Rincon
en Limba Engleză Hardback – 27 sep 2013
This dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after chemical freeze-out. This matter can be well approximated using a pion gas out of equilibrium. We describe the theoretical framework needed to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We subsequently introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly, then go on to calculate the transport properties of the low-temperature phase of quantum chromodynamics - the hadronic medium - which can be used in hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase transition by studying this coefficient in atomic Argon (around the liquid-gas phase transition) and in the linear sigma model in the limit of a large number of scalar fields (which presents a chiral phase transition). Finally, we provide an experimental method for estimating the bulk viscosity in relativistic heavy-ion collisions by performing correlations of the fluctuating components of the stress-energy tensor.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63746 lei  6-8 săpt.
  Springer International Publishing – 23 aug 2016 63746 lei  6-8 săpt.
Hardback (1) 64171 lei  6-8 săpt.
  Springer International Publishing – 27 sep 2013 64171 lei  6-8 săpt.

Din seria Springer Theses

Preț: 64171 lei

Preț vechi: 75495 lei
-15% Nou

Puncte Express: 963

Preț estimativ în valută:
12285 12641$ 10355£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319004242
ISBN-10: 3319004247
Pagini: 220
Ilustrații: XIX, 215 p. 68 illus., 20 illus. in color.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.45 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Relativistic Heavy Ion Collisions.- Boltzmann-Uehling-Uhlenbeck Equation.- Shear Viscosity and KSS Coefficient.- Bulk Viscosity.- Thermal and Electrical Conductivities.- Bhatnagar-Gross-Krook or Relaxation Time Approximation.- Strangeness Diffusion.- Charm Diffusion.- Linear Sigma Model and Phase Transitions.- Measurement of the Bulk Viscosity.

Textul de pe ultima copertă

This dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after chemical freeze-out. This matter can be well approximated using a pion gas out of equilibrium. We describe the theoretical framework needed to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We subsequently introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly, then go on to calculate the transport properties of the low-temperature phase of quantum chromodynamics - the hadronic medium - which can be used in hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase transition by studying this coefficient in atomic Argon (around the liquid-gas phase transition) and in the linear sigma model in the limit of a large number of scalar fields (which presents a chiral phase transition). Finally, we provide an experimental method for estimating the bulk viscosity in relativistic heavy-ion collisions by performing correlations of the fluctuating components of the stress-energy tensor.

Caracteristici

Nominated as an outstanding Ph.D. thesis by the Universidad Complutense de Madrid Presents a unified description of non-equilibrium phenomena in a hadronic gas Applies unitarized effective theories to the calculation of transport coefficients in mesons Includes supplementary material: sn.pub/extras