Handwriting Recognition: Soft Computing and Probabilistic Approaches: Studies in Fuzziness and Soft Computing, cartea 133
Autor Zhi-Qiang Liu, Jin-Hai Cai, Richard Buseen Limba Engleză Paperback – 7 dec 2010
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 643.17 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 7 dec 2010 | 643.17 lei 6-8 săpt. | |
Hardback (1) | 649.60 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 21 iul 2003 | 649.60 lei 6-8 săpt. |
Din seria Studies in Fuzziness and Soft Computing
- 20% Preț: 999.85 lei
- 20% Preț: 653.06 lei
- 20% Preț: 872.96 lei
- 20% Preț: 930.57 lei
- 20% Preț: 1051.00 lei
- 20% Preț: 992.44 lei
- 20% Preț: 655.85 lei
- 20% Preț: 1001.86 lei
- 18% Preț: 954.14 lei
- 20% Preț: 330.10 lei
- 20% Preț: 333.04 lei
- 20% Preț: 997.56 lei
- Preț: 391.61 lei
- 20% Preț: 647.79 lei
- 20% Preț: 986.01 lei
- 18% Preț: 958.56 lei
- 20% Preț: 996.40 lei
- 20% Preț: 999.35 lei
- 15% Preț: 646.43 lei
- 20% Preț: 651.57 lei
- 20% Preț: 997.89 lei
- 15% Preț: 641.03 lei
- 20% Preț: 1009.74 lei
- 20% Preț: 992.62 lei
- Preț: 388.72 lei
- 18% Preț: 1223.43 lei
- 20% Preț: 651.42 lei
- 18% Preț: 951.59 lei
- 18% Preț: 948.61 lei
Preț: 643.17 lei
Preț vechi: 803.96 lei
-20% Nou
Puncte Express: 965
Preț estimativ în valută:
123.08€ • 127.72$ • 102.88£
123.08€ • 127.72$ • 102.88£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642072802
ISBN-10: 3642072801
Pagini: 252
Ilustrații: XV, 230 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of hardcover 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642072801
Pagini: 252
Ilustrații: XV, 230 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of hardcover 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Feature Extraction Methods.- 1.2 Pattern Recognition Methods.- 2 Pre-processing and Feature Extraction.- 2.1 Pre-processing of Handwritten Images.- 2.2 Feature Extraction from Binarized Images.- 2.3 Feature Extraction Using Gabor Filters.- 2.4 Concluding Remarks.- 3 Hidden Markov Model-Based Method for Recognizing Handwritten Digits.- 3.1 Theory of Hidden Markov Models.- 3.2 Recognizing Handwritten Numerals Using Statistical and Structural Information.- 3.3 Experimental Results.- 3.4 Conclusion.- 4 Markov Models with Spectral Features for Handwritten Numeral Recognition.- 4.1 Related Work Using Contour Information.- 4.2 Fourier Descriptors.- 4.3 Hidden Markov Model in Spectral Space.- 4.4 Experimental Results.- 4.5 Discussion.- 5 Markov Random Field Model for Recognizing Handwritten Digits.- 5.1 Fundamentals of Markov Random Fields.- 5.2 Markov Random Field for Pattern Recognition.- 5.3 Recognition of Handwritten Numerals Using MRF Models.- 5.4 Conclusion.- 6 Markov Random Field Models for Recognizing Handwritten Words.- 6.1 Markov Random Field for Handwritten Word Recognition.- 6.2 Neighborhood Systems and Cliques.- 6.3 Clique Functions.- 6.4 Maximizing the Compatibility with Relaxation Labeling.- 6.5 Design of Weights.- 6.6 Experimental Results.- 6.7 Conclusion.- 7 A Structural and Relational Approach to Handwritten Word Recognition.- 7.1 Introduction.- 7.2 Gabor Parameter Estimation.- 7.3 Feature Extraction.- 7.4 Conditional Rule Generation System.- 7.5 Experimental Results.- 7.6 Conclusion.- 8 Handwritten Word Recognition Using Fuzzy Logic.- 8.1 Introduction.- 8.2 Extraction of Oriented Parts.- 8.3 System Training.- 8.4 Word Recognition.- 8.5 Experimental Results.- 8.6 Conclusion.- 9 Conclusion.- 9.1 Summary and Discussions.- 9.2 Future Directions.- 9.3 References.
Caracteristici
A fresh look at the problem of unconstrained handwriting recognition from the soft computing viewpoint