Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms: Studies in Fuzziness and Soft Computing, cartea 170
Autor Martin Pelikanen Limba Engleză Hardback – feb 2005
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 314.67 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 21 oct 2010 | 314.67 lei 6-8 săpt. | |
Hardback (1) | 320.69 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – feb 2005 | 320.69 lei 6-8 săpt. |
Din seria Studies in Fuzziness and Soft Computing
- 20% Preț: 961.96 lei
- 20% Preț: 628.35 lei
- 20% Preț: 284.42 lei
- 20% Preț: 872.96 lei
- 20% Preț: 895.32 lei
- 20% Preț: 1011.16 lei
- 20% Preț: 954.82 lei
- 20% Preț: 963.88 lei
- 18% Preț: 917.99 lei
- 20% Preț: 317.69 lei
- 20% Preț: 320.52 lei
- 20% Preț: 959.76 lei
- Preț: 376.90 lei
- 20% Preț: 623.28 lei
- 20% Preț: 948.63 lei
- 18% Preț: 922.23 lei
- 20% Preț: 958.63 lei
- 20% Preț: 961.47 lei
- 15% Preț: 621.99 lei
- 20% Preț: 626.91 lei
- 20% Preț: 960.07 lei
- 15% Preț: 616.80 lei
- 20% Preț: 971.48 lei
- 20% Preț: 955.00 lei
- Preț: 374.13 lei
- 18% Preț: 1177.02 lei
- 20% Preț: 626.79 lei
- 18% Preț: 915.54 lei
- 18% Preț: 912.66 lei
Preț: 320.69 lei
Preț vechi: 400.87 lei
-20% Nou
Puncte Express: 481
Preț estimativ în valută:
61.38€ • 64.75$ • 51.15£
61.38€ • 64.75$ • 51.15£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540237747
ISBN-10: 3540237747
Pagini: 188
Ilustrații: XVIII, 166 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.44 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540237747
Pagini: 188
Ilustrații: XVIII, 166 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.44 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
From Genetic Variation to Probabilistic Modeling.- Probabilistic Model-Building Genetic Algorithms.- Bayesian Optimization Algorithm.- Scalability Analysis.- The Challenge of Hierarchical Difficulty.- Hierarchical Bayesian Optimization Algorithm.- Hierarchical BOA in the Real World.
Textul de pe ultima copertă
This book provides a framework for the design of competent optimization techniques by combining advanced evolutionary algorithms with state-of-the-art machine learning techniques. The book focuses on two algorithms that replace traditional variation operators of evolutionary algorithms by learning and sampling Bayesian networks: the Bayesian optimization algorithm (BOA) and the hierarchical BOA (hBOA). BOA and hBOA are theoretically and empirically shown to provide robust and scalable solution for broad classes of nearly decomposable and hierarchical problems. A theoretical model is developed that estimates the scalability and adequate parameter settings for BOA and hBOA. The performance of BOA and hBOA is analyzed on a number of artificial problems of bounded difficulty designed to test BOA and hBOA on the boundary of their design envelope. The algorithms are also extensively tested on two interesting classes of real-world problems: MAXSAT and Ising spin glasses with periodic boundary conditions in two and three dimensions. Experimental results validate the theoretical model and confirm that BOA and hBOA provide robust and scalable solution for nearly decomposable and hierarchical problems with only little problem-specific information.
Caracteristici
Presents a new generation of evolutionary algorithms, which are revolutionary approaches to black-box optimization Includes supplementary material: sn.pub/extras