Cantitate/Preț
Produs

How Fuzzy Concepts Contribute to Machine Learning: Studies in Fuzziness and Soft Computing, cartea 416

Autor Mahdi Eftekhari, Adel Mehrpooya, Farid Saberi-Movahed, Vicenç Torra
en Limba Engleză Paperback – 17 feb 2023
This book introduces some contemporary approaches on the application of fuzzy and hesitant fuzzy sets in machine learning tasks such as classification, clustering and dimension reduction. Many situations arise in machine learning algorithms in which applying methods for uncertainty modeling and multi-criteria decision making can lead to a better understanding of algorithms behavior as well as achieving good performances. Specifically, the present book is a collection of novel viewpoints on how fuzzy and hesitant fuzzy concepts can be applied to data uncertainty modeling as well as being used to solve multi-criteria decision making challenges raised in machine learning problems. Using the multi-criteria decision making framework, the book shows how different algorithms, rather than human experts, are employed to determine membership degrees. The book is expected to bring closer the  communities of pure mathematicians of fuzzy sets and data scientists. 
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62677 lei  6-8 săpt.
  Springer International Publishing – 17 feb 2023 62677 lei  6-8 săpt.
Hardback (1) 63291 lei  6-8 săpt.
  Springer International Publishing – 16 feb 2022 63291 lei  6-8 săpt.

Din seria Studies in Fuzziness and Soft Computing

Preț: 62677 lei

Preț vechi: 78346 lei
-20% Nou

Puncte Express: 940

Preț estimativ în valută:
11993 12666$ 9981£

Carte tipărită la comandă

Livrare economică 13-27 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030940683
ISBN-10: 3030940683
Pagini: 167
Ilustrații: XII, 167 p. 41 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.26 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Fuzziness and Soft Computing

Locul publicării:Cham, Switzerland

Cuprins

Chapter 1: Preliminaries.- Chapter 2: A Definition for Hesitant Fuzzy Partitions.- Chapter 3: Unsupervised Feature Selection Method. Chapter 4:  Fuzzy Partitioning of Continuous Attributes.- Chapter 5: Comparing Different Stopping Criteria.

Textul de pe ultima copertă

This book introduces some contemporary approaches on the application of fuzzy and hesitant fuzzy sets in machine learning tasks such as classification, clustering and dimension reduction. Many situations arise in machine learning algorithms in which applying methods for uncertainty modeling and multi-criteria decision making can lead to a better understanding of algorithms behavior as well as achieving good performances. Specifically, the present book is a collection of novel viewpoints on how fuzzy and hesitant fuzzy concepts can be applied to data uncertainty modeling as well as being used to solve multi-criteria decision making challenges raised in machine learning problems. Using the multi-criteria decision making framework, the book shows how different algorithms, rather than human experts, are employed to determine membership degrees. The book is expected to bring closer the  communities of pure mathematicians of fuzzy sets and data scientists. 

Caracteristici

Recent research on the application of fuzzy and hesitant fuzzy sets in machine learning tasks Shows how fuzzy concepts can be used to solve multi-criteria decision making challenges raised in machine learning Brings closer the communities of pure mathematicians of fuzzy sets and data scientists