Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning: Springer Theses
Autor Thorsten Wuesten Limba Engleză Hardback – 4 mai 2015
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 640.24 lei 6-8 săpt. | |
Springer International Publishing – 17 oct 2016 | 640.24 lei 6-8 săpt. | |
Hardback (1) | 646.43 lei 6-8 săpt. | |
Springer International Publishing – 4 mai 2015 | 646.43 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1154.07 lei
- Preț: 389.88 lei
- 15% Preț: 646.94 lei
- 18% Preț: 1220.45 lei
- Preț: 399.29 lei
- 18% Preț: 997.88 lei
- 18% Preț: 941.05 lei
- Preț: 544.53 lei
- 15% Preț: 643.16 lei
- 15% Preț: 642.68 lei
- 15% Preț: 639.25 lei
- 20% Preț: 558.82 lei
- 18% Preț: 943.43 lei
- 18% Preț: 1116.26 lei
- 15% Preț: 640.06 lei
- 15% Preț: 640.06 lei
- Preț: 276.68 lei
- 15% Preț: 636.45 lei
- 18% Preț: 891.17 lei
- 15% Preț: 640.88 lei
- Preț: 389.70 lei
- 20% Preț: 563.89 lei
- Preț: 393.35 lei
- 15% Preț: 637.93 lei
- 15% Preț: 641.85 lei
- 18% Preț: 1112.30 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1103.62 lei
- 18% Preț: 1109.92 lei
- 18% Preț: 1225.94 lei
- 18% Preț: 944.99 lei
- 18% Preț: 944.19 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1229.10 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1217.27 lei
- 15% Preț: 636.80 lei
- 18% Preț: 1000.87 lei
- 15% Preț: 635.96 lei
- 15% Preț: 640.88 lei
- Preț: 387.20 lei
- 18% Preț: 999.45 lei
- Preț: 385.25 lei
- Preț: 385.25 lei
- 18% Preț: 1109.92 lei
- 18% Preț: 1110.72 lei
- Preț: 386.99 lei
- 15% Preț: 637.13 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 646.43 lei
Preț vechi: 760.50 lei
-15% Nou
Puncte Express: 970
Preț estimativ în valută:
123.71€ • 127.63$ • 104.70£
123.71€ • 127.63$ • 104.70£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319176109
ISBN-10: 3319176102
Pagini: 299
Ilustrații: XVIII, 272 p. 139 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:2015
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3319176102
Pagini: 299
Ilustrații: XVIII, 272 p. 139 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:2015
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Introduction.- Developments of manufacturing systems with a focus on product and process quality.- Current approaches with a focus on holistic information management in manufacturing.- Development of the product state concept.- Application of machine learning to identify state drivers.- Application of SVM to identify relevant state drivers.- Evaluation of the developed approach.- Recapitulation.
Textul de pe ultima copertă
The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. This approach is able to utilize complex, diverse and high-dimensional data sets, which often occur in manufacturing applications, and to integrate the important process intra- and interrelations. The approach has been evaluated using three scenarios from different manufacturing domains (aviation, chemical and semiconductor). The results, which are reported in detail in this book, confirmed that it is possible to incorporate implicit process intra- and interrelations on both a process and programme level by applying SVM-based feature ranking. In practice, this method can be used to identify the most important process parameters and state characteristics, the so-called state drivers, of a manufacturing system. Given the increasing availability of data and information, this selection support can be directly utilized in, e.g., quality monitoring and advanced process control. Importantly, the method is neither limited to specific products, manufacturing processes or systems, nor by specific quality concepts.
Caracteristici
Nominated as an outstanding thesis by Universität Bremen, Germany Reports on a simple and efficient supervised machine learning approach for the analysis and control of complex, multi-stage manufacturing systems Describes the implementation of a holistic machine-learning based approach for dealing with incomplete information and complex tasks in realistic manufacturing situations Includes supplementary material: sn.pub/extras