Cantitate/Preț
Produs

Introduction to Isospectrality: Universitext

Autor Alberto Arabia
en Limba Engleză Paperback – 14 sep 2022
"Can one hear the shape of a drum?" This striking question, made famous by Mark Kac, conceals a precise mathematical problem, whose study led to sophisticated mathematics. This textbook presents the theory underlying the problem, for the first time in a form accessible to students.

Specifically, this book provides a detailed presentation of Sunada's method and the construction of non-isometric yet isospectral drum membranes, as first discovered by Gordon–Webb–Wolpert. The book begins with an introductory chapter on Spectral Geometry, emphasizing isospectrality and providing a panoramic view (without proofs) of the Sunada–Bérard–Buser strategy. The rest of the book consists of three chapters. Chapter 2 gives an elementary treatment of flat surfaces and describes Buser's combinatorial method to construct a flat surface with a given group of isometries (a Buser surface). Chapter 3 proves the main isospectrality theorems and describes the transplantation technique on Buser surfaces. Chapter 4 builds Gordon–Webb–Wolpert domains from Buser surfaces and establishes their isospectrality.

Richly illustrated and supported by four substantial appendices, this book is suitable for lecture courses to students having completed introductory graduate courses in algebra, analysis, differential geometry and topology. It also offers researchers an elegant, self-contained reference on the topic of isospectrality.
Citește tot Restrânge

Din seria Universitext

Preț: 36530 lei

Nou

Puncte Express: 548

Preț estimativ în valută:
6993 7196$ 5895£

Carte tipărită la comandă

Livrare economică 25 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031171222
ISBN-10: 3031171225
Pagini: 238
Ilustrații: XI, 238 p. 154 illus., 142 illus. in color.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.48 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Universitext

Locul publicării:Cham, Switzerland

Cuprins

1 Introduction.- 2 The Wave Equation on Flat Manifolds.- 3 The Sunada–Bérard–Buser Method.- 4 The Gordon–Webb–Wolpert Isospectral Domains.- A Linear Representations of Finite Groups and Almost-Conjugate Subgroups.- B The Laplacian as Isometry-Invariant Differential Operator.- C The Path-Distance on a Hausdorff Connected Flat Manifold.- D Group Quotients of Flat Manifolds.- References.- Glossary.- Index.

Recenzii

“This book is accessible to third year university students, which describes a complete and elegant solution to a long-standing mathematical problem.” (Bo Liu, zbMATH 1505.58001, 2023)

Notă biografică

Alberto Arabia is a specialist in cohomological theories, especially Equivariant Cohomology and p-adic Cohomology. His publications in Equivariant Cohomology include the book Equivariant Poincaré Duality on G-Manifolds (Lecture Notes in Mathematics 2288, Springer 2021), while in p-adic Cohomology he succeeded with Zoghman Mebkhout in the globalization of the Monsky–Washnitzer cohomology (2010). He has also conducted important research in the field of Configuration Spaces (Mémoires de la SMF 170, 2021).

Textul de pe ultima copertă

"Can one hear the shape of a drum?" This striking question, made famous by Mark Kac, conceals a precise mathematical problem, whose study led to sophisticated mathematics. This textbook presents the theory underlying the problem, for the first time in a form accessible to students.

Specifically, this book provides a detailed presentation of Sunada's method and the construction of non-isometric yet isospectral drum membranes, as first discovered by Gordon–Webb–Wolpert. The book begins with an introductory chapter on Spectral Geometry, emphasizing isospectrality and providing a panoramic view (without proofs) of the Sunada–Bérard–Buser strategy. The rest of the book consists of three chapters. Chapter 2 gives an elementary treatment of flat surfaces and describes Buser's combinatorial method to construct a flat surface with a given group of isometries (a Buser surface). Chapter 3 proves the main isospectrality theorems and describes the transplantation technique on Buser surfaces. Chapter 4 builds Gordon–Webb–Wolpert domains from Buser surfaces and establishes their isospectrality.

Richly illustrated and supported by four substantial appendices, this book is suitable for lecture courses to students having completed introductory graduate courses in algebra, analysis, differential geometry and topology. It also offers researchers an elegant, self-contained reference on the topic of isospectrality.

Caracteristici

A self-contained account of the key contributions of Sunada, Buser, Bérard, Gordon, Webb and Wolpert Provides a detailed construction of contractible, non-isometric isospectral surfaces Includes 190 figures and illustrations, mostly in color