Cantitate/Preț
Produs

Introduction to Operator Space Theory: London Mathematical Society Lecture Note Series, cartea 294

Autor Gilles Pisier
en Limba Engleză Paperback – 24 aug 2003
The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C*-algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of 'length' of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 66216 lei

Preț vechi: 74400 lei
-11% Nou

Puncte Express: 993

Preț estimativ în valută:
12678 13202$ 10519£

Carte tipărită la comandă

Livrare economică 13-27 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521811651
ISBN-10: 0521811651
Pagini: 488
Dimensiuni: 153 x 229 x 26 mm
Greutate: 0.71 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:Cambridge, United Kingdom

Cuprins

Part I. Introduction to Operator Spaces: 1. Completely bounded maps; 2. Minimal tensor product; 3. Minimal and maximal operator space structures on a Banach space; 4. Projective tensor product; 5. The Haagerup tensor product; 6. Characterizations of operator algebras; 7. The operator Hilbert space; 8. Group C*-algebras; 9. Examples and comments; 10. Comparisons; Part II. Operator Spaces and C*-tensor products: 11. C*-norms on tensor products; 12. Nuclearity and approximation properties; 13. C*; 14. Kirchberg's theorem on decomposable maps; 15. The weak expectation property; 16. The local lifting property; 17. Exactness; 18. Local reflexivity; 19. Grothendieck's theorem for operator spaces; 20. Estimating the norms of sums of unitaries; 21. Local theory of operator spaces; 22. B(H) * B(H); 23. Completely isomorphic C*-algebras; 24. Injective and projective operator spaces; Part III. Operator Spaces and Non Self-Adjoint Operator Algebras: 25. Maximal tensor products and free products of non self-adjoint operator algebras; 26. The Blechter-Paulsen factorization; 27. Similarity problems; 28. The Sz-nagy-halmos similarity problem; Solutions to the exercises; References.

Recenzii

'The tone of the book is quite informal, friendly and inviting. Even to experts in the field, a large proportion of the results, and certainly of the proofs, will be new and stimulating. … there are literally thousands of wonderful results and insights in the text which the reader will not find elsewhere. The book covers an incredible amount of ground, and makes use of some of the most exciting recent work in modern analysis. … It is a magnificent book: an enormous treasure trove, and a work of love and care by one of the great analysts of our time. All students and researchers in functional analysis should have a copy. Anybody planning to work in operator space theory will need to be thoroughly immersed in it.' Proceedings of the Edinburgh Mathematical Society

Descriere

An introduction to the theory of operator spaces, emphasising applications to C*-algebras.