Cantitate/Preț
Produs

Journées Arithmétiques 1980: London Mathematical Society Lecture Note Series, cartea 56

Editat de J. V. Armitage
en Limba Engleză Paperback – 15 sep 1982
For a number of years, French mathematicians have run regular number theory conferences to which they have invited number theorists from many countries. To repay their hospitality, the London Mathematical Society arranged for the 1980 'Journees Arithmeiques' to be held in Exeter. The papers published here are either based on the main invited lectures or on selected research talks given at the conference. They cover all branches of the subject: combinatorial and elementary methods; analytic number theory; transcendence theory; Galois module theory and algebraic number theory in general; elliptic curves and modular functions; local fields; additive number theory; Diophantine geometry, and uniform distribution. It will be necessary reading for all those undertaking research in number theory.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 54251 lei

Preț vechi: 60957 lei
-11% Nou

Puncte Express: 814

Preț estimativ în valută:
10388 10704$ 8717£

Carte tipărită la comandă

Livrare economică 22 februarie-08 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521285131
ISBN-10: 0521285135
Pagini: 412
Dimensiuni: 152 x 228 x 23 mm
Greutate: 0.6 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:Cambridge, United Kingdom

Cuprins

1. Abelian functions and transcendence D. Bertrand; 2. Measures of irrationality, transcendence and algebraic independence: recent progress G. V. Chudnovsky; 3. The Riemann zeta-function D. R. Heath-Brown; 4. On exponential sums and certain of their applications C. Hooley; 5. On the calculation of regulators and class numbers of quadratic fields H. W. Lenstra Jnr.; 6. Petits discriminants des corps de nombres Jaques Martinet; 7. Stickelberger relations in class groups and Galois module structure Leon R. McCulloh; 8. Uniform distribution of sequences of integers W. Narkiewicz; 9. Diophantine equations with parameters A. Schinzel; 10. Galois module structure of rings of integers M. J. Taylor; 11. On the fractional parts of αn3, βn2 and γn R. C. Baker; 12. Irregularities of point distribution in unit cubes W. W. L. Chen; 13. The Hasse principle for pairs of quadratic forms C. F. Coray; 14. Algorithms d'approximation Diophantienne Eugene Dubois; 15. On the group PSL2(Z[i]) J. Elstroot, F. Grunewald and J. Mennicke; 16. Suites a faible discrepance en dimension s H. Faure; 17. Canonical divisibilities of values of p-adic L-functions Georges Gras; 18. Minimal related bases and related problems George P. Grekos; 19. Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums Henryk Iwaniec; 20. Non-standard methods in Diophantine geometry Ernst Kani; 21. An adelic proof of the Hardy-Littlewood theorem on Waring's problem Gilles Lachaud; 22. Class numbers of real Abelian number fields of small conduct F. J. Van Der Linden; 23. Algebraic independence properties of values of elliptic functions D. W. Masser and G. Wustholz; 24. Estimation elementaires effectives sur les nombres algebriques Maurice Mignotte; 25. Continued fractions and related algorithms G. J. Rieger; 26. Iwasawa theory and elliptic curves: supersingular primes Karl Rubin; 27. On relations between Gauss sums and cyclotomic units C. G. Schmidt; 28. Sur la proximite des diviseurs Gerald Tenenbaum

Descriere

Covers all branches of number theory.