Cantitate/Preț
Produs

Lectures on Kähler Geometry: London Mathematical Society Student Texts, cartea 69

Autor Andrei Moroianu
en Limba Engleză Hardback – 28 mar 2007
Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 41185 lei  6-8 săpt.
  Cambridge University Press – 28 mar 2007 41185 lei  6-8 săpt.
Hardback (1) 105385 lei  6-8 săpt.
  Cambridge University Press – 28 mar 2007 105385 lei  6-8 săpt.

Din seria London Mathematical Society Student Texts

Preț: 105385 lei

Preț vechi: 122541 lei
-14% Nou

Puncte Express: 1581

Preț estimativ în valută:
20171 20787$ 17029£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521868914
ISBN-10: 0521868912
Pagini: 182
Ilustrații: 131 exercises
Dimensiuni: 152 x 229 x 14 mm
Greutate: 0.38 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Student Texts

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; Part I. Basics on Differential Geometry: 1. Smooth manifolds; 2. Tensor fields on smooth manifolds; 3. The exterior derivative; 4. Principal and vector bundles; 5. Connections; 6. Riemannian manifolds; Part II. Complex and Hermitian Geometry: 7. Complex structures and holomorphic maps; 8. Holomorphic forms and vector fields; 9. Complex and holomorphic vector bundles; 10. Hermitian bundles; 11. Hermitian and Kähler metrics; 12. The curvature tensor of Kähler manifolds; 13. Examples of Kähler metrics; 14. Natural operators on Riemannian and Kähler manifolds; 15. Hodge and Dolbeault theory; Part III. Topics on Compact Kähler Manifolds: 16. Chern classes; 17. The Ricci form of Kähler manifolds; 18. The Calabi–Yau theorem; 19. Kähler–Einstein metrics; 20. Weitzenböck techniques; 21. The Hirzebruch–Riemann–Roch formula; 22. Further vanishing results; 23. Ricci–flat Kähler metrics; 24. Explicit examples of Calabi–Yau manifolds; Bibliography; Index.

Recenzii

"A concise and well-written modern introduction to the subject."
Tatyana E. Foth, Mathematical Reviews

Notă biografică


Descriere

This graduate text provides a concise and self-contained introduction to Kähler geometry.