Cantitate/Preț
Produs

Les Conjectures de Stark sur les Fonctions L d'Artin en s=0: Notes d'un cours a Orsay redigees par Dominique Bernardi: Progress in Mathematics, cartea 47

Autor J. Tate
fr Limba Franceză Hardback – 1984
This book presents a self-contained introduction to H.M. Stark’s remarkable conjectures about the leading term of the Taylor expansion of Artin’s L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet’s class number formula and Kronecker’s limit formula. They provide an unexpected contribution to Hilbert’s 12th problem on the generalization of class fields by the values of transcendental functions.
This volume also treats these topics: a proof of the main conjecture for rational characters, and Chinburg’s invariant; P. Delgne’s proof of a function field analogue; p-adic versions of the conjectures due to B. Gross and J.-P. Serre.
This volume belongs on the shelf of every mathematics library.
Citește tot Restrânge

Din seria Progress in Mathematics

Preț: 38089 lei

Nou

Puncte Express: 571

Preț estimativ în valută:
7292 7579$ 6046£

Carte tipărită la comandă

Livrare economică 08-22 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817631888
ISBN-10: 0817631887
Pagini: 148
Ilustrații: IV, 148 p.
Dimensiuni: 156 x 234 x 11 mm
Greutate: 0.4 kg
Ediția:1984
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

Introduction.-Fonctions L D’Artin.-La Conjecture Principale de Stark.-Caracteres a Valeurs Rationnelles.-Les Cas r(x)=0 et r(x)=1.-La Conjecture Plus Fine Dans le Cas Abelien.-Le Cas Des Corps de Fonctions.-Analogues p-Adiques des Conjectures de Stark.-Bibliographie.

Textul de pe ultima copertă

This book presents a self-contained introduction to H.M. Stark’s remarkable conjectures about the leading term of the Taylor expansion of Artin’s L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet’s class number formula and Kronecker’s limit formula. They provide an unexpected contribution to Hilbert’s 12th problem on the generalization of class fields by the values of transcendental functions.
This volume also treats these topics: a proof of the main conjecture for rational characters, and Chinburg’s invariant; P. Delgne’s proof of a function field analogue; p-adic versions of the conjectures due to B. Gross and J.-P. Serre.
This volume belongs on the shelf of every mathematics library.