Linear Systems and Optimal Control: Springer Series in Information Sciences, cartea 18
Autor Charles K. Chui, Guanrong Chenen Limba Engleză Paperback – 15 apr 2014
Din seria Springer Series in Information Sciences
- 20% Preț: 328.04 lei
- 18% Preț: 927.66 lei
- 15% Preț: 628.11 lei
- 20% Preț: 327.89 lei
- Preț: 374.65 lei
- Preț: 371.11 lei
- Preț: 380.47 lei
- 20% Preț: 315.40 lei
- 18% Preț: 755.40 lei
- Preț: 376.93 lei
- Preț: 385.32 lei
- 20% Preț: 321.33 lei
- Preț: 371.70 lei
- 15% Preț: 623.79 lei
- 15% Preț: 621.74 lei
- Preț: 376.55 lei
- 20% Preț: 323.90 lei
- Preț: 375.97 lei
- 20% Preț: 634.98 lei
- 15% Preț: 642.08 lei
- 18% Preț: 1351.22 lei
- 15% Preț: 620.15 lei
- 15% Preț: 624.28 lei
- Preț: 375.03 lei
- 20% Preț: 630.99 lei
- 18% Preț: 922.94 lei
- Preț: 382.16 lei
- 20% Preț: 633.72 lei
- 20% Preț: 627.14 lei
- Preț: 379.14 lei
- Preț: 376.93 lei
- 15% Preț: 564.33 lei
Preț: 370.01 lei
Nou
Puncte Express: 555
Preț estimativ în valută:
70.82€ • 73.81$ • 58.95£
70.82€ • 73.81$ • 58.95£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642647871
ISBN-10: 3642647871
Pagini: 168
Ilustrații: VIII, 155 p. 1 illus.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Information Sciences
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642647871
Pagini: 168
Ilustrații: VIII, 155 p. 1 illus.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Information Sciences
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. State-Space Descriptions.- 1.1 Introduction.- 1.2 An Example of Input-Output Relations.- 1.3 An Example of State-Space Descriptions.- 1.4 State-Space Models.- Exercises.- 2. State Transition Equations and Matrices.- 2.1 Continuous-Time Linear Systems.- 2.2 Picard’s Iteration.- 2.3 Discrete-Time Linear Systems.- 2.4 Discretization.- Exercises.- 3. Controllability.- 3.1 Control and Observation Equations.- 3.2 Controllability of Continuous-Time Linear Systems.- 3.3 Complete Controllability of Continuous-Time Linear Systems.- 3.4 Controllability and Complete Controllability of Discrete-Time Linear Systems.- Exercises.- 4. Observability and Dual Systems.- 4.1 Observability of Continuous-Time Linear Systems.- 4.2 Observability of Discrete-Time Linear Systems.- 4.3 Duality of Linear Systems.- 4.4 Dual Time-Varying Discrete-Time Linear Systems.- Exercises.- 5. Time-Invariant Linear Systems.- 5.1 Preliminary Remarks.- 5.2 The Kalman Canonical Decomposition.- 5.3 Transfer Functions.- 5.4 Pole-Zero Cancellation of Transfer Functions.- Exercises.- 6. Stability.- 6.1 Free Systems and Equilibrium Points.- 6.2 State-Stability of Continuous-Time Linear Systems.- 6.3 State-Stability of Discrete-Time Linear Systems.- 6.4 Input-Output Stability of Continuous-Time Linear Systems.- 6.5 Input-Output Stability of Discrete-Time Linear Systems.- Exercises.- 7. Optimal Control Problems and Variational Methods.- 7.1 The Lagrange, Bolza, and Mayer Problems.- 7.2 A Variational Method for Continuous-Time Systems.- 7.3 Two Examples.- 7.4 A Variational Method for Discrete-Time Systems.- Exercises.- 8. Dynamic Programming.- 8.1 The Optimality Principle.- 8.2 Continuous-Time Dynamic Programming.- 8.3 Discrete-Time Dynamic Programming.- 8.4 The Minimum Principle of Pontryagin.- Exercises.- 9.Minimum-Time Optimal Control Problems.- 9.1 Existence of the Optimal Control Function.- 9.2 The Bang-Bang Principle.- 9.3 The Minimum Principle of Pontryagin for Minimum-Time Optimal Control Problems.- 9.4 Normal Systems.- Exercises.- 10. Notes and References.- 10.1 Reachability and Constructibility.- 10.2 Differential Controllability.- 10.3 State Reconstruction and Observers.- 10.4 The Kalman Canonical Decomposition.- 10.5 Minimal Realization.- 10.6 Stability of Nonlinear Systems.- 10.7 Stabilization.- 10.8 Matrix Riccati Equations.- 10.9 Pontryagin’s Maximum Principle.- 10.10 Optimal Control of Distributed Parameter Systems.- 10.11 Stochastic Optimal Control.- References.- Answers and Hints to Exercises.- Notation.