Pitch Determination of Speech Signals: Algorithms and Devices: Springer Series in Information Sciences, cartea 3
Autor W. Hessen Limba Engleză Paperback – 16 dec 2011
Din seria Springer Series in Information Sciences
- 20% Preț: 337.66 lei
- 18% Preț: 955.08 lei
- 15% Preț: 646.62 lei
- 20% Preț: 337.52 lei
- Preț: 385.62 lei
- Preț: 381.98 lei
- Preț: 391.61 lei
- 20% Preț: 324.64 lei
- Preț: 380.84 lei
- 18% Preț: 777.69 lei
- Preț: 387.96 lei
- Preț: 396.62 lei
- 20% Preț: 330.75 lei
- Preț: 382.57 lei
- 15% Preț: 642.18 lei
- 15% Preț: 640.06 lei
- Preț: 387.58 lei
- 20% Preț: 333.40 lei
- Preț: 386.99 lei
- 20% Preț: 653.71 lei
- 18% Preț: 1391.21 lei
- 15% Preț: 638.43 lei
- 15% Preț: 642.68 lei
- Preț: 386.00 lei
- 20% Preț: 649.60 lei
- 18% Preț: 950.21 lei
- Preț: 393.35 lei
- 20% Preț: 652.41 lei
- 20% Preț: 645.65 lei
- Preț: 390.25 lei
- Preț: 387.96 lei
- 15% Preț: 580.97 lei
Preț: 661.02 lei
Preț vechi: 777.66 lei
-15% Nou
Puncte Express: 992
Preț estimativ în valută:
126.52€ • 131.59$ • 106.02£
126.52€ • 131.59$ • 106.02£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642819285
ISBN-10: 3642819281
Pagini: 720
Ilustrații: XIV, 700 p.
Dimensiuni: 155 x 235 x 38 mm
Greutate: 0.99 kg
Ediția:Softcover reprint of the original 1st ed. 1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Information Sciences
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642819281
Pagini: 720
Ilustrații: XIV, 700 p.
Dimensiuni: 155 x 235 x 38 mm
Greutate: 0.99 kg
Ediția:Softcover reprint of the original 1st ed. 1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Information Sciences
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Voice Source Parameter Measurement and the Speech Signal.- 1.2 A Short Look at the Areas of Application.- 1.3 Organization of the Book.- 2. Basic Terminology. A Short Introduction to Digital Signal Processing.- 2.1 The Simplified Model of Speech Excitation.- 2.2 Digital Signal Processing 1: Signal Representation.- 2.3 Digital Signal Processing 2: Filters.- 2.4 Time-Variant Systems. The Principle of Short-Term Analysis.- 2.5 Definition of the Task. The Linear Model of Speech Production.- 2.6 A First Categorization of Pitch Determination Algorithms (PDAs).- 3. The Human Voice Source.- 3.1 Mechanism of Sound Generation at the Larynx.- 3.2 Operational Modes of the Larynx. Registers.- 3.3 The Glottal Source (Excitation) Signal.- 3.4 The Influence of the Vocal Tract Upon Voice Source Parameters.- 3.5 The Voiceless and the Transient Sources.- 4. Measuring Range, Accuracy, Pitch Perception.- 4.1 The Range of Fundamental Frequency.- 4.2 Pitch Perception. Toward a Redefinition of the Task.- 4.3 Measurement Accuracy.- 4.4 Representation of the Pitch Information in the Signal.- 4.5 Calibration and Performance Evaluation of a PDA.- 5. Manual and Instrumental Pitch Determination, Voicing Determination.- 5.1 Manual Pitch Determination.- 5.2 Pitch Determination Instruments (PDIs).- 5.3 Voicing Determination — Selected Examples.- 6. Time-Domain Pitch Determination.- 6.1 Pitch Determination by Fundamental-Harmonic Extraction.- 6.2 The Other Extreme — Temporal Structure Analysis.- 6.3 The Intermediate Device: Temporal Structure Transformation and Simplification.- 6.4 Parallel Processing in Fundamental Period Determination. Multichannel PDAs.- 6.5 Special-Purpose (High-Accuracy) Time-Domain PDAs.- 6.6 The Postprocessor.- 6.7 Final Comments.- 7. Design andImplementation of a Time-Domain PDA for Undistorted and Band-Limited Signals.- 7.1 The Linear Algorithm.- 7.2 Band-Limited Signals in Time-Domain PDAs.- 7.3 An Experimental Study Towards a Universal Time-Domain PDA Applying a Nonlinear Function and a Threshold Analysis Basic Extractor.- 7.4 Toward a Choice of Optimal Nonlinear Functions.- 7.5 Implementation of a Three-Channel PDA with Nonlinear Processing.- 8. Short-Term Analysis Pitch Determination.- 8.1 The Short-Term Transformation and Its Consequences.- 8.2 Autocorrelation Pitch Determination.- 8.3 “Anticorrelation” Pitch Determination: Average Magnitude Difference Function, Distance and Dissimilarity Measures, and Other Nonstationary Short-Term Analysis PDAs.- 8.4 Multiple Spectral Transform (“Cepstrum”) Pitch Determination.- 8.5 Frequency-Domain PDAs.- 8.6 Maximum-Likelihood (Least-Squares) Pitch Determination.- 8.7 Summary and Conclusions.- 9. General Discussion: Summary, Error Analysis, Applications.- 9.1 A Short Survey of the Principal Methods of Pitch Determination.- 9.2 Calibration, Search for Standards.- 9.3 Performance Evaluation of PDAs.- 9.4 A Closer Look at the Applications.- 9.5 Possible Paths Towards a General Solution.- Appendix A. Experimental Data on the Behavior of Nonlinear Functions in Time-Domain Pitch Determination Algorithms.- A.1 The Data Base of the Investigation.- A.2 Examples for the Behavior of the Nonlinear Functions.- A.3 Relative Amplitude RA1 and Enhancement RE1 of the First Harmonic.- A.4 Relative Amplitude RASM of Spurious Maximum and Autocorrelation Threshold.- A.5 Processing Sequence, Preemphasis, Phase, Band Limitation.- A.6 Optimal Performance of Nonlinear Functions.- A.7 Performance of the Comb Filters.- Appendix B. Original Text of the Quotations in Foreign LanguagesThroughout This Book.- List of Abbreviations.- Author and Subject Index.