Cantitate/Preț
Produs

Longitudinally Polarised Terahertz Radiation for Relativistic Particle Acceleration: Springer Theses

Autor Matthew. J Cliffe
en Limba Engleză Hardback – 18 ian 2017
This book elaborates on the acceleration of charged particles with ultrafast terahertz electromagnetic radiation. It paves the way for new, and improves many aspects of current, accelerator applications. These include providing shorter electron bunches for ultrafast time-resolved pump-probe spectroscopy, enabling complex longitudinal profiles to be imparted onto charged particle bunches and significantly improving the ability to synchronise an accelerator to an external laser.

The author has developed new sources of terahertz radiation with attractive properties for accelerator-based applications. These include a radially biased large-area photoconductive antenna (PCA) that provided the largest longitudinally polarised terahertz electric field component ever measured from a PCA. This radially biased PCA was used in conjunction with an energy recovery linear accelerator for electron acceleration experiments at the Daresbury Laboratory. To achieve even higher longitudinally polarised terahertz electric field strengths, and to be able to temporally tune the terahertz radiation, the author investigated generation within non-linear optical crystals. He developed a novel generation scheme employing a matched pair of polarity inverted magnesium-oxide doped stoichiometric lithium niobate crystals, which made it possible to generate longitudinally polarised single-cycle terahertz radiation with an electric field amplitude an order of magnitude larger than existing sources.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62118 lei  6-8 săpt.
  Springer International Publishing – 13 iul 2018 62118 lei  6-8 săpt.
Hardback (1) 62729 lei  6-8 săpt.
  Springer International Publishing – 18 ian 2017 62729 lei  6-8 săpt.

Din seria Springer Theses

Preț: 62729 lei

Preț vechi: 73799 lei
-15% Nou

Puncte Express: 941

Preț estimativ în valută:
12009 12483$ 9957£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319486420
ISBN-10: 331948642X
Pagini: 210
Ilustrații: XIII, 150 p. 86 illus., 67 illus. in color.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.41 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Cuprins

Introduction.- Literature Review.- Background Theory.- Experimental Apparatus.- Radiation Propagation Simulation.- ALICE Energy Modulation Induced by Terahertz Reaction (AEMITR).- Generation of Longitudinally Polarised Terahertz Radiation with a Photoconductive Antenna.- Generation of Longitudinally Polarised Terahertz Radiation in Non-Linear Optical Crystals.- Conclusions and Future Work.

Notă biografică

Matthew J. Cliffe obtained a physics degree from the University of Hertfordshire in 2010. Subsequently he moved to The University of Manchester to study for an M.Sc. in Photon Science. After its successful completion Matthew remained at Manchester to undertake a Ph.D. in terahertz physics, supervied by Dr. D. M. Graham, Prof. W. R. Flavell and Dr. S. P. Jamison. During his Ph.D. he developed terahertz radiation sources and diagnostic techniques for accelerator applications at Daresbury Laboratory. In 2015 Matthew started working as a postdoctoral research associate at The Cockcroft Institute in the field of ultrafast terahertz generation for particle acceleration.

Textul de pe ultima copertă

This book elaborates on the acceleration of charged particles with ultrafast terahertz electromagnetic radiation. It paves the way for new, and improves many aspects of current, accelerator applications. These include providing shorter electron bunches for ultrafast time-resolved pump-probe spectroscopy, enabling complex longitudinal profiles to be imparted onto charged particle bunches and significantly improving the ability to synchronise an accelerator to an external laser.

The author has developed new sources of terahertz radiation with attractive properties for accelerator-based applications. These include a radially biased large-area photoconductive antenna (PCA) that provided the largest longitudinally polarised terahertz electric field component ever measured from a PCA. This radially biased PCA was used in conjunction with an energy recovery linear accelerator for electron acceleration experiments at the Daresbury Laboratory. To achieve even higher longitudinally polarised terahertz electric field strengths, and to be able to temporally tune the terahertz radiation, the author investigated generation within non-linear optical crystals. He developed a novel generation scheme employing a matched pair of polarity inverted magnesium-oxide doped stoichiometric lithium niobate crystals, which made it possible to generate longitudinally polarised single-cycle terahertz radiation with an electric field amplitude an order of magnitude larger than existing sources.


Caracteristici

Nominated as an outstanding PhD thesis by the University of Manchester, UK Develops a technique for creating shorter electron bunches for ultrafast pump-probe spectroscopy Presents a scheme for generating single-cycle terahertz radiation with amplitude an order of magnitude higher than from existing sources Includes supplementary material: sn.pub/extras