Machine Learning-Augmented Spectroscopies for Intelligent Materials Design: Springer Theses
Autor Nina Andrejevicen Limba Engleză Paperback – 8 oct 2023
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 920.05 lei 6-8 săpt. | |
Springer International Publishing – 8 oct 2023 | 920.05 lei 6-8 săpt. | |
Hardback (1) | 925.80 lei 6-8 săpt. | |
Springer International Publishing – 7 oct 2022 | 925.80 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1134.58 lei
- Preț: 383.36 lei
- 15% Preț: 636.05 lei
- 18% Preț: 1199.82 lei
- Preț: 392.61 lei
- 18% Preț: 981.04 lei
- 18% Preț: 925.18 lei
- Preț: 544.53 lei
- 15% Preț: 632.33 lei
- 15% Preț: 631.86 lei
- 15% Preț: 628.49 lei
- 20% Preț: 558.82 lei
- 18% Preț: 927.51 lei
- 18% Preț: 1097.42 lei
- 15% Preț: 629.29 lei
- 15% Preț: 629.29 lei
- Preț: 276.68 lei
- 15% Preț: 625.74 lei
- 18% Preț: 876.13 lei
- 15% Preț: 630.09 lei
- Preț: 383.18 lei
- 20% Preț: 563.89 lei
- Preț: 386.77 lei
- 15% Preț: 627.18 lei
- 15% Preț: 631.05 lei
- 18% Preț: 1093.52 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1085.00 lei
- 18% Preț: 1091.20 lei
- 18% Preț: 1205.23 lei
- 18% Preț: 929.05 lei
- 18% Preț: 928.27 lei
- 15% Preț: 629.29 lei
- 18% Preț: 1208.34 lei
- 15% Preț: 629.29 lei
- 18% Preț: 1196.72 lei
- 15% Preț: 626.08 lei
- 18% Preț: 983.98 lei
- 15% Preț: 625.26 lei
- 15% Preț: 630.09 lei
- Preț: 380.72 lei
- 18% Preț: 982.57 lei
- Preț: 378.80 lei
- Preț: 378.80 lei
- 18% Preț: 1091.20 lei
- 18% Preț: 1091.98 lei
- Preț: 380.52 lei
- 15% Preț: 626.41 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 920.05 lei
Preț vechi: 1122.02 lei
-18% Nou
Puncte Express: 1380
Preț estimativ în valută:
176.16€ • 183.44$ • 146.16£
176.16€ • 183.44$ • 146.16£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031148101
ISBN-10: 303114810X
Ilustrații: XII, 97 p. 29 illus., 28 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.17 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 303114810X
Ilustrații: XII, 97 p. 29 illus., 28 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.17 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Chapter1: Introduction.- Chapter2: Background.- Chapter3: Data-efficient learning of materials’ vibrational properties.- Chapter4: Machine learning-assisted parameter retrieval from polarized neutron reflectometry measurements.- Chapter5: Machine learning spectral indicators of topology.- Chapter6: Conclusion and outlook.
Notă biografică
Nina Andrejevic obtained her B.S. in Engineering Physics from Cornell University in 2016 and her Ph.D. in Materials Science and Engineering from MIT in 2022. Her research interests are at the intersection of physics-informed machine learning methods and quantum materials characterization. She is currently a Maria Goeppert Mayer Postdoctoral Fellow at Argonne National Laboratory, where she combines machine learning methods with X-ray scattering and spectroscopic measurements for intelligent analysis of materials’ signatures.
Textul de pe ultima copertă
The thesis contains several pioneering results at the intersection of state-of-the-art materials characterization techniques and machine learning. The use of machine learning empowers the information extraction capability of neutron and photon spectroscopies. In particular, new knowledge and new physics insights to aid spectroscopic analysis may hold great promise for next-generation quantum technology. As a prominent example, the so-called proximity effect at topological material interfaces promises to enable spintronics without energy dissipation and quantum computing with fault tolerance, yet the characteristic spectral features to identify the proximity effect have long been elusive. The work presented within permits a fine resolution of its spectroscopic features and a determination of the proximity effect which could aid further experiments with improved interpretability. A few novel machine learning architectures are proposed in this thesis work which leverage the case whenthe data is scarce and utilize the internal symmetry of the system to improve the training quality. The work sheds light on future pathways to apply machine learning to augment experiments.
Caracteristici
Nominated as an outstanding PhD thesis by Massachusetts Institute of Technology Introduces machine learning methods for neutron and photon scattering and spectroscopy Identifies spectral signatures of the proximity effect through machine learning for the first time