Machine Learning: ECML 2007: 18th European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings: Lecture Notes in Computer Science, cartea 4701
Editat de Joost N. Kok, Jacek Koronacki, Ramon Lopez de Mantaras, Stan Matwin, Dunja Mladenicen Limba Engleză Paperback – 5 sep 2007
Din seria Lecture Notes in Computer Science
- 20% Preț: 1040.03 lei
- 20% Preț: 333.46 lei
- 20% Preț: 335.08 lei
- 20% Preț: 444.17 lei
- 20% Preț: 238.01 lei
- 20% Preț: 333.46 lei
- 20% Preț: 438.69 lei
- Preț: 440.52 lei
- 20% Preț: 336.71 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 632.22 lei
- 17% Preț: 427.22 lei
- 20% Preț: 641.78 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1053.45 lei
- 20% Preț: 579.56 lei
- Preț: 373.56 lei
- 20% Preț: 330.23 lei
- 15% Preț: 429.74 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 567.60 lei
- 20% Preț: 575.48 lei
- 20% Preț: 571.63 lei
- 20% Preț: 747.79 lei
- 15% Preț: 568.74 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 346.40 lei
- 20% Preț: 574.05 lei
- Preț: 402.62 lei
- 20% Preț: 584.40 lei
- 20% Preț: 747.79 lei
- 20% Preț: 809.19 lei
- 20% Preț: 649.49 lei
- 20% Preț: 343.16 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 658.58 lei
Preț vechi: 823.23 lei
-20% Nou
Puncte Express: 988
Preț estimativ în valută:
126.04€ • 130.92$ • 104.69£
126.04€ • 130.92$ • 104.69£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540749578
ISBN-10: 3540749578
Pagini: 838
Ilustrații: XXIV, 812 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 1.15 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540749578
Pagini: 838
Ilustrații: XXIV, 812 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 1.15 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Talks.- Learning, Information Extraction and the Web.- Putting Things in Order: On the Fundamental Role of Ranking in Classification and Probability Estimation.- Mining Queries.- Adventures in Personalized Information Access.- Long Papers.- Statistical Debugging Using Latent Topic Models.- Learning Balls of Strings with Correction Queries.- Neighborhood-Based Local Sensitivity.- Approximating Gaussian Processes with -Matrices.- Learning Metrics Between Tree Structured Data: Application to Image Recognition.- Shrinkage Estimator for Bayesian Network Parameters.- Level Learning Set: A Novel Classifier Based on Active Contour Models.- Learning Partially Observable Markov Models from First Passage Times.- Context Sensitive Paraphrasing with a Global Unsupervised Classifier.- Dual Strategy Active Learning.- Decision Tree Instability and Active Learning.- Constraint Selection by Committee: An Ensemble Approach to Identifying Informative Constraints for Semi-supervised Clustering.- The Cost of Learning Directed Cuts.- Spectral Clustering and Embedding with Hidden Markov Models.- Probabilistic Explanation Based Learning.- Graph-Based Domain Mapping for Transfer Learning in General Games.- Learning to Classify Documents with Only a Small Positive Training Set.- Structure Learning of Probabilistic Relational Models from Incomplete Relational Data.- Stability Based Sparse LSI/PCA: Incorporating Feature Selection in LSI and PCA.- Bayesian Substructure Learning - Approximate Learning of Very Large Network Structures.- Efficient Continuous-Time Reinforcement Learning with Adaptive State Graphs.- Source Separation with Gaussian Process Models.- Discriminative Sequence Labeling by Z-Score Optimization.- Fast Optimization Methods for L1 Regularization: A Comparative Study and Two New Approaches.- Bayesian Inference for Sparse Generalized Linear Models.- Classifier Loss Under Metric Uncertainty.- Additive Groves of Regression Trees.- Efficient Computation of Recursive Principal Component Analysis for Structured Input.- Hinge Rank Loss and the Area Under the ROC Curve.- Clustering Trees with Instance Level Constraints.- On Pairwise Naive Bayes Classifiers.- Separating Precision and Mean in Dirichlet-Enhanced High-Order Markov Models.- Safe Q-Learning on Complete History Spaces.- Random k-Labelsets: An Ensemble Method for Multilabel Classification.- Seeing the Forest Through the Trees: Learning a Comprehensible Model from an Ensemble.- Avoiding Boosting Overfitting by Removing Confusing Samples.- Planning and Learning in Environments with Delayed Feedback.- Analyzing Co-training Style Algorithms.- Policy Gradient Critics.- An Improved Model Selection Heuristic for AUC.- Finding the Right Family: Parent and Child Selection for Averaged One-Dependence Estimators.- Short Papers.- Stepwise Induction of Multi-target Model Trees.- Comparing Rule Measures for Predictive Association Rules.- User Oriented Hierarchical Information Organization and Retrieval.- Learning a Classifier with Very Few Examples: Analogy Based and Knowledge Based Generation of New Examples for Character Recognition.- Weighted Kernel Regression for Predicting Changing Dependencies.- Counter-Example Generation-Based One-Class Classification.- Test-Cost Sensitive Classification Based on Conditioned Loss Functions.- Probabilistic Models for Action-Based Chinese Dependency Parsing.- Learning Directed Probabilistic Logical Models: Ordering-Search Versus Structure-Search.- A Simple Lexicographic Ranker and Probability Estimator.- On Minimizing the Position Error in Label Ranking.- On Phase Transitions in Learning Sparse Networks.- Semi-supervised Collaborative Text Classification.- Learning from Relevant Tasks Only.- An Unsupervised Learning Algorithm for Rank Aggregation.- Ensembles of Multi-Objective Decision Trees.- Kernel-Based Grouping of Histogram Data.- Active Class Selection.- Sequence Labeling with Reinforcement Learning and Ranking Algorithms.- Efficient Pairwise Classification.- Scale-Space Based Weak Regressors for Boosting.- K-Means with Large and Noisy Constraint Sets.- Towards ‘Interactive’ Active Learning in Multi-view Feature Sets for Information Extraction.- Principal Component Analysis for Large Scale Problems with Lots of Missing Values.- Transfer Learning in Reinforcement Learning Problems Through Partial Policy Recycling.- Class Noise Mitigation Through Instance Weighting.- Optimizing Feature Sets for Structured Data.- Roulette Sampling for Cost-Sensitive Learning.- Modeling Highway Traffic Volumes.- Undercomplete Blind Subspace Deconvolution Via Linear Prediction.- Learning an Outlier-Robust Kalman Filter.- Imitation Learning Using Graphical Models.- Nondeterministic Discretization of Weights Improves Accuracy of Neural Networks.- Semi-definite Manifold Alignment.- General Solution for Supervised Graph Embedding.- Multi-objective Genetic Programming for Multiple Instance Learning.- Exploiting Term, Predicate, and Feature Taxonomies inPropositionalization and Propositional Rule Learning.