Cantitate/Preț
Produs

Maneuverable Formation Control in Constrained Space: Automation and Control Engineering

Autor Dongyu Li, Xiaomei Liu, Qinglei Hu, Shuzhi Ge
en Limba Engleză Hardback – 14 mai 2024
Inspired by the community behaviors of animals and humans, cooperative control has been intensively studied by numerous researchers in recent years. Cooperative control aims to build a network system collectively driven by a global objective function in a distributed or centralized communication network and shows great application potential in a wide domain. From the perspective of cybernetics in network system cooperation, one of the main tasks is to design the formation control scheme for multiple intelligent unmanned systems, facilitating the achievements of hazardous missions – e.g., deep space exploration, cooperative military operation, and collaborative transportation. Various challenges in such real-world applications are driving the proposal of advanced formation control design, which is to be addressed to bring academic achievements into real industrial scenarios. This book extends the performance of formation control beyond classical dynamic or stationary geometric configurations, focusing on formation maneuverability that enables cooperative systems to keep suitable spacial configurations during agile maneuvers. This book embarks on an adventurous journey of maneuverable formation control in constrained space with limited resources, to accomplish the exploration of an unknown environment. The investigation of the real-world challenges, including model uncertainties, measurement inaccuracy, input saturation, output constraints, and spatial collision avoidance, brings the value of this book into the practical industry, rather than being limited to academics.
Citește tot Restrânge

Din seria Automation and Control Engineering

Preț: 88388 lei

Preț vechi: 118300 lei
-25% Nou

Puncte Express: 1326

Preț estimativ în valută:
16923 17622$ 14041£

Carte tipărită la comandă

Livrare economică 14-28 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032277226
ISBN-10: 103227722X
Pagini: 410
Ilustrații: 256
Dimensiuni: 156 x 234 mm
Greutate: 0.92 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Automation and Control Engineering

Locul publicării:Boca Raton, United States

Public țintă

General

Cuprins

1.Introduction Part I Layered Affine Formation Control2. Multi-Layer Formation Control of Multi-Agent Systems3. Layered Affine Formation Control of Networked Uncertain Systems: a Fully Distributed Framework over Directed Graphs4. Cooperative Affine Circumnavigation of Networked Microsatellites5. Fully Distributed Cooperative Affine Circumnavigation of Networked Unmanned Aerial VehiclesPart II Formation Control in Constrained Space6. Formation Potential Field for Trajectory Tracking Control of Multi-Agent Systems in Constrained Space7. Neural-Network-Based Switching Formation Tracking Control of Multi-Agent Systems with Uncertainties in Constrained Space8.Event-Triggered Coordination for Formation Tracking Control in Constrained Space with Limited Communication9.Vision-Based Leader-Follower Formation Control of Multi-Agent Systems with Visibility Constraints10.Conclusion

Notă biografică

Dongyu Li received the B.S. and Ph.D. degree from Control Science and Engineering, Harbin Institute of Technology, China, in 2016 and 2020. He was a joint Ph.D. student with the Department of Electrical and Computer Engineering, National University of Singapore from 2017 to2019, and a research fellow with the Department of Biomedical Engineering, National University of Singapore, from 2019 to 2021. He is currently an Associate Professor with the School of Cyber Science and Technology, Beihang University, China. His research interests include networked system cooperation, adaptive systems, and robotic control.
Xiaomei Liu received the B.Sc. degree in automation from Xi’an Jiaotong University, Xi’an, China, in 2013, and the Ph.D. degree from National University of Singapore, Singapore, in 2017. Her current research interests include cooperative control of multiagent systems, social robotics, deep learning, and computer vision.
Qinglei Hu received the B.Eng. degree in electrical and electronic engineering from Zhengzhou University, Zhengzhou, China, in 2001, and the Ph.D. degree, with the specialization in guidance and control, in control science and engineering from the Harbin Institute of Technology, Harbin, China, in 2006. From 2003 to 2014, he was with the Department of Control Science and Engineering, Harbin Institute of Technology, and then he joined Beihang University, Beijing, China, in 2014, as a Full Professor. His current research interests include variable structure control and applications, and fault-tolerant control and applications.
Shuzhi Sam Ge received the B.Sc. degree from Beihang University, Beijing, China, in 1986 and the Ph.D. degree from the Imperial College London, London, U.K., in 1993. He is the Director of the Social Robotics Laboratory of Interactive Digital Media Institute, Singapore, and the Centre for Robotics, Chengdu, China, and a Professor with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore, on leave from the School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu. He has co-authored four books and over 300 international journal and conference papers. His current research interests include social robotics, adaptive control, intelligent systems, and artificial intelligence. Dr. Ge is the Editor-in-Chief of the International Journal of Social Robotics (Springer). He has served/been serving as an Associate Editor for a number of flagship journals, including IEEE Transactions on Automation Control, IEEE Transactions on Control Systems Technology, IEEE Transactions on Neural Networks, and Automatica. He serves as a Book Editor for the Taylor and Francis Automation and Control Engineering Series. He served as the Vice President for Technical Activities from 2009 to 2010 and Membership Activities from 2011 to 2012, and a member of the Board of Governors from 2007 to 2009 at the IEEE Control Systems Society. He is a fellow of the International Federation of Automatic Control, the Institution of Engineering and Technology, and the Society of Automotive Engineering.

Descriere

Inspired by the community behaviors of animals and humans, cooperative control has been intensively studied by numerous researchers in recent years, which aims to build a network system collectively driven by a global objective function.