Cantitate/Preț
Produs

Manifolds of Nonpositive Curvature: Progress in Mathematics, cartea 61

Autor Werner Ballmann, Misha Gromov, Viktor Schroeder
en Limba Engleză Paperback – 14 apr 2013

Din seria Progress in Mathematics

Preț: 68208 lei

Preț vechi: 80245 lei
-15% Nou

Puncte Express: 1023

Preț estimativ în valută:
13056 13690$ 10787£

Carte tipărită la comandă

Livrare economică 29 ianuarie-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781468491616
ISBN-10: 146849161X
Pagini: 284
Ilustrații: V, 266 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

Preface.-Introduction.-Lectures on Manifolds of Nonpositive Curvature.-Simply Connected Manifolds of Nonpositive Curvature.-Groups of Isometries.-Finiteness theorems.-Strong Rigidity of Locally Symmetric Spaces.-Appendix 1. Manifolds of Higher Rank.-Appendix 2: Finiteness Results for Nonanalytic Manifolds.-Appendix 3: Tits Metric and the Action of Isometries at Infinity.-Appendix 4: Tits Metric and Asymptotic Rigidity.-Appendix 5: Symmetric Spaces of Noncompact types.-References.-Subject Index.

Textul de pe ultima copertă

This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the Collège de France in Paris. Among others these lectures threat local and global rigidity problems (e.g., a generalization of the famous Mostow rigidity theorem) and finiteness results for manifolds of finite volume. V. Schroeder wrote up these lectures, including complete and detailed proofs. A lot of background material is added to the first lectures. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.