Cantitate/Preț
Produs

Markov Chains and Invariant Probabilities: Progress in Mathematics, cartea 211

Autor Onésimo Hernández-Lerma, Jean B. Lasserre
en Limba Engleză Paperback – 23 oct 2012
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38150 lei  6-8 săpt.
  Birkhäuser Basel – 23 oct 2012 38150 lei  6-8 săpt.
Hardback (1) 38874 lei  6-8 săpt.
  Birkhäuser Basel – 24 feb 2003 38874 lei  6-8 săpt.

Din seria Progress in Mathematics

Preț: 38150 lei

Nou

Puncte Express: 572

Preț estimativ în valută:
7306 7528$ 6121£

Carte tipărită la comandă

Livrare economică 25 februarie-11 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783034894081
ISBN-10: 3034894082
Pagini: 228
Ilustrații: XVI, 208 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.33 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

1 Preliminaries.- 1.1 Introduction.- 1.2 Measures and Functions.- 1.3 Weak Topologies.- 1.4 Convergence of Measures.- 1.5 Complements.- 1.6 Notes.- I Markov Chains and Ergodicity.- 2 Markov Chains and Ergodic Theorems.- 3 Countable Markov Chains.- 4 Harris Markov Chains.- 5 Markov Chains in Metric Spaces.- 6 Classification of Markov Chains via Occupation Measures.- II Further Ergodicity Properties.- 7 Feller Markov Chains.- 8 The Poisson Equation.- 9 Strong and Uniform Ergodicity.- III Existence and Approximation of Invariant Probability Measures.- 10 Existence of Invariant Probability Measures.- 11 Existence and Uniqueness of Fixed Points for Markov Operators.- 12 Approximation Procedures for Invariant Probability Measures.

Recenzii

"It should be stressed that an important part of the results presented is due to the authors. . . . In the reviewer's opinion, this is an elegant and most welcome addition to the rich literature of Markov processes."
--MathSciNet

Textul de pe ultima copertă

This book concerns discrete-time homogeneous Markov chains that admit an invariant probability measure. The main objective is to give a systematic, self-contained presentation on some key issues about the ergodic behavior of that class of Markov chains. These issues include, in particular, the various types of convergence of expected and pathwise occupation measures, and ergodic decompositions of the state space. Some of the results presented appear for the first time in book form. A distinguishing feature of the book is the emphasis on the role of expected occupation measures to study the long-run behavior of Markov chains on uncountable spaces.
The intended audience are graduate students and researchers in theoretical and applied probability, operations research, engineering and economics.

Caracteristici

Some of the results presented appear for the first time in book form Emphasis on the role of expected occupation measures to study the long-run behavior of Markov chains on uncountable spaces