Mathematical Foundations of the State Lumping of Large Systems: Mathematics and Its Applications, cartea 264
Autor Vladimir S. Korolyuk, A.F. Turbinen Limba Engleză Hardback – 31 aug 1993
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 381.48 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 27 sep 2012 | 381.48 lei 6-8 săpt. | |
Hardback (1) | 388.65 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 aug 1993 | 388.65 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- Preț: 228.74 lei
- 18% Preț: 929.67 lei
- 15% Preț: 637.51 lei
- 15% Preț: 641.01 lei
- 15% Preț: 581.65 lei
- Preț: 387.69 lei
- 18% Preț: 939.44 lei
- 15% Preț: 576.99 lei
- 5% Preț: 644.14 lei
- 15% Preț: 647.61 lei
- 15% Preț: 637.63 lei
- 15% Preț: 594.68 lei
- Preț: 388.27 lei
- 15% Preț: 640.86 lei
- Preț: 374.76 lei
- Preț: 387.90 lei
- 15% Preț: 694.40 lei
- Preț: 384.47 lei
- Preț: 383.18 lei
- 15% Preț: 575.21 lei
- 15% Preț: 642.97 lei
- 15% Preț: 577.15 lei
- 20% Preț: 577.42 lei
- Preț: 388.86 lei
- 15% Preț: 591.76 lei
- 15% Preț: 584.52 lei
- 15% Preț: 640.86 lei
- 15% Preț: 638.14 lei
- Preț: 385.64 lei
- 15% Preț: 638.14 lei
- 15% Preț: 632.64 lei
- Preț: 382.98 lei
Preț: 388.65 lei
Nou
Puncte Express: 583
Preț estimativ în valută:
74.40€ • 76.52$ • 61.72£
74.40€ • 76.52$ • 61.72£
Carte tipărită la comandă
Livrare economică 18 februarie-04 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792324133
ISBN-10: 0792324137
Pagini: 278
Ilustrații: X, 278 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.59 kg
Ediția:1993
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792324137
Pagini: 278
Ilustrații: X, 278 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.59 kg
Ediția:1993
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Classes of Linear Operators.- 1.1. Basic notions.- 1.2. Closed and closable operators.- 1.3. Normally solvable operators.- 1.4. Invertibly reducible operators.- 1.5. Pseudo-resolvents.- 2. Semigroups of Operators and Markov Processes.- 2.1. Basic notions.- 2.2. Infinitesimal operators of ergodic Markov processes.- 2.3. Holomorphic semigroups with invertibly reducible infinitesimal operators.- 2.4. Semigroups of operators uniformly and strongly ergodic at the infinity.- 2.5. “Generating” operators of ergodic semi-Markov processes.- 2.6. Abstract potential operators.- 2.7. Examples of invertibly reducible operators.- 3. Perturbations of Invertibly Reducible Operators.- 3.1. Eigen-projectors and eigen-operators.- 3.2. Inversion of an invertibly reducible operator perturbed on the spectrum.- 3.3. Resolvents of singularly perturbed semigroups.- 3.4. Limit theorems and asymptotic expansions for resolvents of singularly perturbed semigroups.- 3.5. Limit theorems and asymptotic expansions for resolvents of singularly perturbed semigroups. The case of s > 2.- 4. Singular Perturbations of Holomorphic Semigroups.- 4.1. Principal problems. The method of Vishyk-Lyusternik-Vasilyeva.- 4.2. Structure of singularly perturbed semigroups.- 4.3. Regular lumped approximations to solutions of singularly perturbed equations.- 5. Asymptotic Expansions and Limit Theorems.- 5.1. Strong limits of singularly perturbed semigroups. Resolvent approach.- 5.2. Asymptotic analysis of singularly perturbed semigroups. The case of s=1.- 5.3. Asymptotic analysis of singularly perturbed semigroups.- 6. Asymptotic Phase Lumping of Markov and Semi-Markov Processes.- 6.1. Limit theorems.- 6.2. Asymptotic phase lumping. The case of s=1.- 6.3. Some examples.- 6.4. Asymptotic phase lumping. The case of s? 2.- 6.5. Classification of processes admitting asymptotic phase lumping.- 6.6. Limit theorems and asymptotic theorems for additive functionals.- 7. Applications of the Theory of Singularly Perturbed Semigroups.- 7.1. Tikhonov systems of differential equations.- 7.2. Nonrelativistic limit of the Dirac operator.- 7.3. Hydrodynamic limit for the linearized Boltzmann equation.- References.