Mathematical Theory of Incompressible Nonviscous Fluids: Applied Mathematical Sciences, cartea 96
Autor Carlo Marchioro, Mario Pulvirentien Limba Engleză Hardback – 5 noi 1993
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 917.56 lei 6-8 săpt. | |
Springer – 30 sep 2011 | 917.56 lei 6-8 săpt. | |
Hardback (1) | 923.38 lei 6-8 săpt. | |
Springer – 5 noi 1993 | 923.38 lei 6-8 săpt. |
Din seria Applied Mathematical Sciences
- 23% Preț: 1367.93 lei
- 18% Preț: 405.27 lei
- 13% Preț: 429.49 lei
- 13% Preț: 430.67 lei
- 24% Preț: 906.76 lei
- 23% Preț: 659.04 lei
- 19% Preț: 743.15 lei
- 18% Preț: 883.37 lei
- 18% Preț: 772.22 lei
- 18% Preț: 923.24 lei
- 15% Preț: 626.99 lei
- Preț: 382.64 lei
- 24% Preț: 808.03 lei
- Preț: 439.74 lei
- Preț: 184.74 lei
- Preț: 387.77 lei
- 18% Preț: 939.15 lei
- 15% Preț: 625.05 lei
- 15% Preț: 513.69 lei
- Preț: 401.40 lei
- Preț: 379.14 lei
- 18% Preț: 714.91 lei
- 15% Preț: 690.83 lei
- Preț: 384.22 lei
- 18% Preț: 988.05 lei
- Preț: 391.67 lei
- 18% Preț: 1097.68 lei
- 18% Preț: 1102.28 lei
- 18% Preț: 1348.92 lei
- 18% Preț: 1097.22 lei
- 18% Preț: 1107.95 lei
- 15% Preț: 634.43 lei
Preț: 923.38 lei
Preț vechi: 1126.07 lei
-18% Nou
Puncte Express: 1385
Preț estimativ în valută:
176.71€ • 185.31$ • 147.35£
176.71€ • 185.31$ • 147.35£
Carte tipărită la comandă
Livrare economică 07-21 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387940441
ISBN-10: 0387940448
Pagini: 284
Ilustrații: XII, 284 p.
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.59 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387940448
Pagini: 284
Ilustrații: XII, 284 p.
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.59 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 General Considerations on the Euler Equation.- 1.1. The Equation of Motion of an Ideal Incompressible Fluid.- 1.2. Vorticity and Stream Function.- 1.3. Conservation Laws.- 1.4. Potential and Irrotational Flows.- 1.5. Comments.- Appendix 1.1 (Liouville Theorem).- Appendix 1.2 (A Decomposition Theorem).- Appendix 1.3 (Kutta-Joukowski Theorem and Complex Potentials).- Appendix 1.4 (d’Alembert Paradox).- Exercises.- 2 Construction of the Solutions.- 2.1. General Considerations.- 2.2. Lagrangian Representation of the Vorticity.- 2.3. Global Existence and Uniqueness in Two Dimensions.- 2.4. Regularity Properties and Classical Solutions.- 2.5. Local Existence and Uniqueness in Three Dimensions.- 2.6. Some Heuristic Considerations on the Three-Dimensional Motion.- 2.7. Comments.- Appendix 2.1 (Integral Inequalities).- Appendix 2.2 (Some Useful Inequalities).- Appendix 2.3 (Quasi-Lipschitz Estimate).- Appendix 2.4 (Regularity Estimates).- Exercises.- 3 Stability of Stationary Solutions of the Euler Equation.- 3.1. A Short Review of the Stability Concept.- 3.2. Sufficient Conditions for the Stability of Stationary Solutions: The Arnold Theorems.- 3.3. Stability in the Presence of Symmetries.- 3.4. Instability.- 3.5. Comments.- Exercises.- 4 The Vortex Model.- 4.1. Heuristic Introduction.- 4.2. Motion of Vortices in the Plane.- 4.3. The Vortex Motion in the Presence of Boundaries.- 4.4. A Rigorous Derivation of the Vortex Model.- 4.5. Three-Dimensional Models.- 4.6. Comments.- Exercises.- 5 Approximation Methods.- 5.1. Introduction.- 5.2. Spectral Methods.- 5.3. Vortex Methods.- 5.4. Comments.- Appendix 5.1 (On K-R Distance).- Exercises.- 6 Evolution of Discontinuities.- 6.1. Vortex Sheet.- 6.2. Existence and Behavior of the Solutions.- 6.3. Comments.- 6.4. SpatiallyInhomogeneous Fluids.- 6.5. Water Waves.- 6.6. Approximations.- Appendix 6.1 (Proof of a Theorem of the Cauchy-Kowalevski Type).- Appendix 6.2 (On Surface Tension).- 7 Turbulence.- 7.1. Introduction.- 7.2. The Onset of Turbulence.- 7.3. Phenomenological Theories.- 7.4. Statistical Solutions and Invariant Measures.- 7.5. Statistical Mechanics of Vortex Systems.- 7.6. Three-Dimensional Models for Turbulence.- References.