Cantitate/Preț
Produs

Measure Theory: Second Edition: Birkhäuser Advanced Texts Basler Lehrbücher

Autor Donald L. Cohn
en Limba Engleză Hardback – 14 iul 2013
Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition includes a chapter on measure-theoretic probability theory, plus brief treatments of the Banach-Tarski paradox, the Henstock-Kurzweil integral, the Daniell integral, and the existence of liftings.
Measure Theory provides a solid background for study in both functional analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are basic courses in point-set topology and in analysis, and the appendices present a thorough review of essential background material.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 45577 lei  6-8 săpt.
  Springer – 6 aug 2015 45577 lei  6-8 săpt.
Hardback (1) 53173 lei  6-8 săpt.
  Springer – 14 iul 2013 53173 lei  6-8 săpt.

Din seria Birkhäuser Advanced Texts Basler Lehrbücher

Preț: 53173 lei

Preț vechi: 62557 lei
-15% Nou

Puncte Express: 798

Preț estimativ în valută:
10178 10684$ 8408£

Carte tipărită la comandă

Livrare economică 30 ianuarie-13 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461469551
ISBN-10: 1461469554
Pagini: 457
Ilustrații: XXI, 457 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.84 kg
Ediția:2nd ed. 2013
Editura: Springer
Colecția Birkhäuser
Seria Birkhäuser Advanced Texts Basler Lehrbücher

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

1. Measures.- Algebras and sigma-algebras.- Measures.- Outer measures.- Lebesgue measure.- Completeness and regularity.- Dynkin classes.- 2. Functions and Integrals.- Measurable functions.- Properties that hold almost everywhere.- The integral.- Limit theorems.- The Riemann integral.- Measurable functions again, complex-valued functions, and image measures.- 3. Convergence.- Modes of Convergence.- Normed spaces.- Definition of L^p and L^p.- Properties of L^p and L-p.- Dual spaces.- 4. Signed and Complex Measures.- Signed and complex measures.- Absolute continuity.- Singularity.- Functions of bounded variation.- The duals of the L^p spaces.- 5. Product Measures.- Constructions.- Fubini’s theorem.- Applications.- 6. Differentiation.- Change of variable in R^d.- Differentiation of measures.- Differentiation of functions.- 7. Measures on Locally Compact Spaces.- Locally compact spaces.- The Riesz representation theorem.- Signed and complex measures; duality.- Additional properties of regular measures.- The µ^*-measurable sets and the dual of L^1.- Products of locally compact spaces.- 8. Polish Spaces and Analytic Sets.- Polish spaces.- Analytic sets.- The separation theorem and its consequences.- The measurability of analytic sets.- Cross sections.- Standard, analytic, Lusin, and Souslin spaces.- 9. Haar Measure.- Topological groups.- The existence and uniqueness of Haar measure.- The algebras L^1 (G) and M (G).- Appendices.- A. Notation and set theory.- B. Algebra.- C. Calculus and topology in R^d.- D. Topological spaces and metric spaces.- E. The Bochner integral.- F Liftings.- G The Banach-Tarski paradox.- H The Henstock-Kurzweil and McShane integralsBibliography.- Index of notation.- Index.

Recenzii

From the book reviews:
“This textbook provides a comprehensive and consistent introduction to measure and integration theory. … The book can be recommended to anyone having basic knowledge of calculus and point-set topology. It is very self-contained, and can thus serve as an excellent reference book as well.” (Ville Suomala, Mathematical Reviews, July, 2014)
“In this second edition, Cohn has updated his excellent introduction to measure theory … and has made this great textbook even better. Those readers unfamiliar with Cohn’s style will discover that his writing is lucid. … this is a wonderful text to learn measure theory from and I strongly recommend it.” (Tushar Das, MAA Reviews, June, 2014)

Textul de pe ultima copertă

Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition includes a chapter on measure-theoretic probability theory, plus brief treatments of the Banach-Tarski paradox, the Henstock-Kurzweil integral, the Daniell integral, and the existence of liftings.
Measure Theory provides a solid background for study in both functional analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are basic courses in point-set topology and in analysis, and the appendices present a thorough review of essential background material.
 
The author aims to present  a straightforward treatment of the part of measure theory necessary for analysis and probability' assuming only basic knowledge of analysis and topology...Each chapter includes numerous well-chosen exercises, varying from very routine practice problems to important extensions and developments of the theory; for the difficult ones there are helpful hints. It is the reviewer's opinion that the author has succeeded in his aim. In spite of its lack of new results, the selection and presentation of materials makes this a useful book for an introduction to measure and integration theory.
—Mathematical Reviews (Review of the First Edition)
 
The book is a comprehensive and clearly written textbook on measure and integration...The book contains appendices on set theory, algebra, calculus and topology in Euclidean spaces, topological and metric spaces, and the Bochner integral. Each section of the book contains a number of exercises.  
—zbMATH (Review of the First Edition)

Caracteristici

New edition provides additional topics such as the Kurzweil-Henstock integral, Banach-Tasrki paradox, a proof of the existence of liftings, the Daniell integral, and a brief introduction to measure-theoretic probability theory Contains numerous examples and exercises Provides a solid background for study in harmonic analysis and probability theory