Mechanistic Studies on Transition Metal-Catalyzed C–H Activation Reactions Using Combined Mass Spectrometry and Theoretical Methods: Springer Theses
Autor Gui-Juan Chengen Limba Engleză Hardback – 26 iun 2017
The book reports on a novel dimeric Pd-M (M = Pd or Ag) model for reaction (i), which successfully explains the meta-selectivity observed experimentally. For reaction (ii), with a combined DFT/MS method, the author successfully reveals the roles of MPAA ligands and a new C-H activation mechanism, which accounts for the improved reactivity and high meta-selectivity and opens new avenues for ligand design. She subsequently applies ion-mobility mass spectrometry to capture and separate the [Pd(MPAA)(substrate)] complex at different stages for the first time, providing support for the internal-base model for reaction (iii). Employing DFT studies, she then establishes a chirality relay model that can be widely applied to MPAA-assisted asymmetric C-H activation reactions. Lastly, for reaction (iv) the author conducts detailed computational studies on several plausible pathways for Cu/O2 and Cu/TBHP systems and finds a reliable method for calculating the single electron transfer (SET) process on the basis of benchmark studies.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 633.02 lei 6-8 săpt. | |
Springer Nature Singapore – 12 dec 2018 | 633.02 lei 6-8 săpt. | |
Hardback (1) | 639.08 lei 6-8 săpt. | |
Springer Nature Singapore – 26 iun 2017 | 639.08 lei 6-8 săpt. |
Din seria Springer Theses
- 18% Preț: 997.88 lei
- Preț: 389.88 lei
- 15% Preț: 646.94 lei
- 18% Preț: 943.43 lei
- Preț: 399.29 lei
- 18% Preț: 944.99 lei
- 15% Preț: 636.80 lei
- 18% Preț: 941.05 lei
- 15% Preț: 643.16 lei
- 15% Preț: 642.68 lei
- 18% Preț: 1103.62 lei
- 20% Preț: 558.82 lei
- 18% Preț: 1112.30 lei
- 18% Preț: 944.19 lei
- 18% Preț: 1109.92 lei
- 18% Preț: 1217.27 lei
- 15% Preț: 640.06 lei
- 15% Preț: 636.45 lei
- 15% Preț: 640.06 lei
- 15% Preț: 640.88 lei
- Preț: 389.70 lei
- 20% Preț: 563.89 lei
- Preț: 393.35 lei
- 15% Preț: 637.93 lei
- 15% Preț: 641.85 lei
- 18% Preț: 1225.94 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1229.10 lei
- 15% Preț: 639.25 lei
- 18% Preț: 999.45 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1220.45 lei
- 18% Preț: 1116.26 lei
- 18% Preț: 1110.72 lei
- 18% Preț: 1000.87 lei
- 18% Preț: 891.17 lei
- 15% Preț: 640.06 lei
- 5% Preț: 1154.07 lei
- 15% Preț: 635.96 lei
- 15% Preț: 640.88 lei
- Preț: 387.20 lei
- 18% Preț: 1109.92 lei
- Preț: 385.25 lei
- Preț: 385.25 lei
- 18% Preț: 1112.30 lei
- 18% Preț: 999.45 lei
- Preț: 386.99 lei
- 15% Preț: 637.13 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 639.08 lei
Preț vechi: 751.86 lei
-15% Nou
Puncte Express: 959
Preț estimativ în valută:
122.32€ • 127.22$ • 102.50£
122.32€ • 127.22$ • 102.50£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811045202
ISBN-10: 9811045208
Pagini: 126
Ilustrații: XVII, 126 p. 95 illus., 77 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.38 kg
Ediția:1st ed. 2017
Editura: Springer Nature Singapore
Colecția Springer
Seria Springer Theses
Locul publicării:Singapore, Singapore
ISBN-10: 9811045208
Pagini: 126
Ilustrații: XVII, 126 p. 95 illus., 77 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.38 kg
Ediția:1st ed. 2017
Editura: Springer Nature Singapore
Colecția Springer
Seria Springer Theses
Locul publicării:Singapore, Singapore
Cuprins
Introduction.- Mechanistic Studies on meta-C-H Activation Reaction.- Mechanistic Studies on MPAA-assisted meta-C-H Activation Reaction.- Mechanistic Studies on MPAA-assisted Asymmetric C-H Activation Reaction.- Mechanistic Studies on Cu-catalyzed sp3 C-H Cross-Dehydrogenative-Coupling Reaction.- Conclusions and Outlook.
Textul de pe ultima copertă
This thesis presents detailed mechanistic studies on a series of important C-H activation reactions using combined computational methods and mass spectrometry experiments. It also provides guidance on the design and improvement of catalysts and ligands. The reactions investigated include: (i) a nitrile-containing template-assisted meta-selective C-H activation, (ii) Pd/mono-N-protected amino acid (MPAA) catalyzed meta-selective C-H activation, (iii) Pd/MPAA catalyzed asymmetric C-H activation reactions, and (iv) Cu-catalyzed sp3 C-H cross-dehydrogenative-coupling reaction.
The book reports on a novel dimeric Pd-M (M = Pd or Ag) model for reaction (i), which successfully explains the meta-selectivity observed experimentally. For reaction (ii), with a combined DFT/MS method, the author successfully reveals the roles of MPAA ligands and a new C-H activation mechanism, which accounts for the improved reactivity and high meta-selectivity and opens new avenues for ligand design. She subsequently applies ion-mobility mass spectrometry to capture and separate the [Pd(MPAA)(substrate)] complex at different stages for the first time, providing support for the internal-base model for reaction (iii). Employing DFT studies, she then establishes a chirality relay model that can be widely applied to MPAA-assisted asymmetric C-H activation reactions. Lastly, for reaction (iv) the author conducts detailed computational studies on several plausible pathways for Cu/O2 and Cu/TBHP systems and finds a reliable method for calculating the single electron transfer (SET) process on the basis of benchmark studies.
The book reports on a novel dimeric Pd-M (M = Pd or Ag) model for reaction (i), which successfully explains the meta-selectivity observed experimentally. For reaction (ii), with a combined DFT/MS method, the author successfully reveals the roles of MPAA ligands and a new C-H activation mechanism, which accounts for the improved reactivity and high meta-selectivity and opens new avenues for ligand design. She subsequently applies ion-mobility mass spectrometry to capture and separate the [Pd(MPAA)(substrate)] complex at different stages for the first time, providing support for the internal-base model for reaction (iii). Employing DFT studies, she then establishes a chirality relay model that can be widely applied to MPAA-assisted asymmetric C-H activation reactions. Lastly, for reaction (iv) the author conducts detailed computational studies on several plausible pathways for Cu/O2 and Cu/TBHP systems and finds a reliable method for calculating the single electron transfer (SET) process on the basis of benchmark studies.
Caracteristici
Nominated as an outstanding PhD thesis by Peking University Combines ion mobility mass spectrometry and computational chemistry to investigate reaction mechanisms in catalysis Provides mechanistic insights for a broad range of important C-H activation reactions Establishes a universal chirality-relay model for Pd/mono-N-protected amino acid (MPAA)-catalyzed asymmetric C-H activation reactions Includes supplementary material: sn.pub/extras