Meromorphic Functions over Non-Archimedean Fields: Mathematics and Its Applications, cartea 522
Autor Pei-Chu Hu, Chung-Chun Yangen Limba Engleză Paperback – 7 dec 2010
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 377.45 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 7 dec 2010 | 377.45 lei 6-8 săpt. | |
Hardback (1) | 384.95 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 30 sep 2000 | 384.95 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- Preț: 228.74 lei
- 18% Preț: 918.48 lei
- 15% Preț: 629.85 lei
- 15% Preț: 633.31 lei
- 15% Preț: 574.68 lei
- Preț: 383.06 lei
- 18% Preț: 928.14 lei
- 15% Preț: 570.05 lei
- 5% Preț: 636.42 lei
- 15% Preț: 639.84 lei
- 15% Preț: 629.99 lei
- 15% Preț: 587.53 lei
- Preț: 383.65 lei
- 15% Preț: 633.17 lei
- Preț: 374.75 lei
- Preț: 383.26 lei
- 15% Preț: 686.07 lei
- Preț: 379.88 lei
- Preț: 378.62 lei
- 15% Preț: 568.30 lei
- 15% Preț: 635.25 lei
- 15% Preț: 570.22 lei
- 20% Preț: 577.41 lei
- Preț: 384.22 lei
- 15% Preț: 584.65 lei
- 15% Preț: 577.51 lei
- 15% Preț: 633.17 lei
- 15% Preț: 630.48 lei
- Preț: 381.05 lei
- 15% Preț: 630.48 lei
- 15% Preț: 625.05 lei
- Preț: 378.41 lei
Preț: 377.45 lei
Nou
Puncte Express: 566
Preț estimativ în valută:
72.23€ • 75.97$ • 60.17£
72.23€ • 75.97$ • 60.17£
Carte tipărită la comandă
Livrare economică 03-17 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789048155460
ISBN-10: 9048155460
Pagini: 304
Ilustrații: VIII, 295 p. 1 illus.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of hardcover 1st ed. 2000
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9048155460
Pagini: 304
Ilustrații: VIII, 295 p. 1 illus.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of hardcover 1st ed. 2000
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Basic facts in p-adic analysis.- 1.1 p-adic numbers.- 1.2 Field extensions.- 1.3 Maximum term of power series.- 1.4 Weierstrass preparation theorem.- 1.5 Newton polygons.- 1.6 Non-Archimedean meromorphic functions.- 2 Nevanlinna theory.- 2.1 Characteristic functions.- 2.2 Growth estimates of meromorphic functions.- 2.3 Two main theorems.- 2.4 Notes on the second main theorem.- 2.5 ‘abc’ conjecture over function fields.- 2.6 Waring’s problem over function fields.- 2.7 Exponent of convergence of zeros.- 2.8 Value distribution of differential polynomials.- 3 Uniqueness of meromorphic functions.- 3.1 Adams-Straus’ uniqueness theorems.- 3.2 Multiple values of meromorphic functions.- 3.3 Uniqueness polynomials of meromorphic functions.- 3.4 Unique range sets of meromorphic functions.- 3.5 The Frank-Reinders’ technique.- 3.6 Some urscm for M(?) and A(?).- 3.7 Some ursim for meromorphic functions.- 3.8 Unique range sets for multiple values.- 4 Differential equations.- 4.1 Malmquist-type theorems.- 4.2 Generalized Malmquist-type theorems.- 4.3 Further results on Malmquist-type theorems.- 4.4 Admissible solutions of some differential equations.- 4.5 Differential equations of constant coefficients.- 5 Dynamics.- 5.1 Attractors and repellers.- 5.2 Riemann-Hurwitz relation.- 5.3 Fixed points of entire functions.- 5.4 Normal families.- 5.5 Montel’s theorems.- 5.6 Fatou-Julia theory.- 5.7 Properties of the Julia set.- 5.8 Iteration of z ? zd.- 5.9 Iteration of z ? z2 + c.- 6 Holomorphic curves.- 6.1 Multilinear algebra.- 6.2 The first main theorem of holomorphic curves.- 6.3 The second main theorem of holomorphic curves.- 6.4 Nochka weight.- 6.5 Degenerate holomorphic curves.- 6.6 Uniqueness of holomorphic curves.- 6.7 Second main theorem for hypersurfaces.- 6.8Holomorphic curves into projective varieties.- 7 Diophantine approximations.- 7.1 Schmidt’s subspace theorems.- 7.2 Vojta’s conjecture.- 7.3 General subspace theorems.- 7.4 Ru-Vojta’s subspace theorem for moving targets.- 7.5 Subspace theorem for degenerate mappings.- A The Cartan conjecture for moving targets.- A.1 Non-degenerate holomorphic curves.- A.2 The Steinmetz lemma.- A.3 A defect relation for moving targets.- A.4 The Ru-Stoll techniques.- A.5 Growth of the Steinmetz-Stoll mappings.- A.6 Moving targets in subgeneral position.- A.7 Moving targets in general position.- Symbols.