Cantitate/Preț
Produs

Microcavities and Photonic Bandgaps: Physics and Applications: NATO Science Series E:, cartea 324

Editat de J. G. Rarity, Claude Weisbuch
en Limba Engleză Hardback – 31 aug 1996
The control of optical modes in microcavities or in photonic bandgap (PBG) materials is coming of age! Although these ideas could have been developed some time ago, it is only recently that they have emerged, due to advances in both atomic physics and in fabrication techniques, be it on the high-quality dielectric mirrors required for high-finesse Fabry­ Perot resonators or in semiconductor multilayer deposition methods. Initially the principles of quantum electro-dynamics (QED) were demonstrated in elegant atomic physics experiments. Now solid-state implementations are being investigated, with several subtle differences from the atomic case such as those due to their continuum of electronic states or the near Boson nature of their elementary excitations, the exciton. Research into quantum optics brings us ever newer concepts with potential to improve system performance such as photon squeezing, quantum cryptography, reversible taps, photonic de Broglie waves and quantum computers. The possibility of implementing these ideas with solid-state systems gives us hope that some could indeed find their way to the market, demonstrating the continuing importance of basic research for applications, be it in a somewhat more focused way than in earlier times for funding.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 179391 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 28 sep 2011 179391 lei  6-8 săpt.
Hardback (1) 179995 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 aug 1996 179995 lei  6-8 săpt.

Din seria NATO Science Series E:

Preț: 179995 lei

Preț vechi: 219507 lei
-18% Nou

Puncte Express: 2700

Preț estimativ în valută:
34451 35810$ 28537£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792341703
ISBN-10: 0792341708
Pagini: 601
Ilustrații: XIV, 601 p.
Dimensiuni: 160 x 240 x 33 mm
Greutate: 1.03 kg
Ediția:1996
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria NATO Science Series E:

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

Microcavities and photonic bandgaps: A summary of physics and applications.- Microcavities and photonic bandgaps: A summary of physics and applications.- Planar Semiconductor Microcavities.- Cavity-polaritons in semiconductor microcavities.- Critical issues on the strong coupling régime in semiconductor microcavities.- Normal-mode coupling in planar semiconductor microcavities.- Dynamical studies of cavity polaritons in semiconductor microcavities: Pump probe measurements and time-resolved photoluminescence.- Spontaneous emission dynamics in planar semiconductor microcavities.- Magnetic and electric field effects in semiconductor quantum microcavity structures.- Time resolved photoluminescence from a semiconductor microcavity: Temperature dependence and role of leaky modes.- Order of magnitude enhanced spontaneous emission from room-temperature bulk GaAs.- Optical double-resonant raman scattering in semiconductor planar microcavities.- Second harmonic generation in a metal-semiconductor-metal monolithic cavity.- Photonic Bandgap Materials, and Novel Structures.- Bandgap engineering of 3-D photonic crystals operating at optical wavelengths.- Microcavities in photonic crystals.- Electromagnetic study of photonic band structures and Anderson localization.- Localization of light in 2D random media.- Strategies for the fabrication of photonic microstructures in semiconductors.- GaInAsP/InP 2-dimensional photonic crystals.- Bound modes of two-dimensional photonic crystal waveguides.- InAs quantum boxes: Active probes for air/GaAs photonic bandgap microstructures.- Spontaneous emission and nonlinear effects in photonic band gap materials.- Guided modes in a 2D photonic-band-gap material: Advantages over the 1D case.- Photonic atoms: Enhanced light coupling.- Photonicsurfaces.- The opal-semiconductor system as a possible photonic bandgap material.- Partial photonic bandgaps in Bragg directions in polystyrene colloidal crystals.- Characterising whispering-gallery modes in microspheres using a near-field probe.- Numerical method for calculating spontaneous emission rate near a surface using Green’s functions.- Microcavity effects in Er3+-doped optical fibres: Alteration of spontaneous emission from 2D fibre microcavities.- Decay time and spectrum of rare earth fluorescence in silvered microfibers.- Device Applications.- Commercial light emitting diode technology: Status, trends, and possible future performance.- Resonant cavity LED’s: Design, fabrication and analysis of high efficiency LED’s.- High efficiency resonant cavity LED’s.- II-VI resonant cavity light emitting diodes for the mid-infrared.- Carrier and photon dynamics in semiconductor microdisk lasers.- Spontaneous emission control in long wavelength semiconductor micropost lasers.- Vertical-cavity surface-emitting lasers with monolithically integrated modulators.- Cavity effects in thin film phosphors based on ZnS.- Using microcavities to manipulate luminescence in conjugated polymers.- Spontaneous emission control in a microcavity edge emitting laser.- Dielectric thin films for microcavity applications.- Quantum Optics.- Optical cavity QED.- Semiconductor cavity QED in high-Q regimes: Exciton polariton boser and nonlinear bi-excitonic spectrum.- Squeezing the light with laser cooled atoms.- Quantum intensity noise of laser diodes.- Quantum control of intensity in semiconductor laser amplifiers.- Single-mode generation of quantum photon states by excited single molecules in a microcavity trap.- Squeezed light generation by four-wave mixing in semiconductors.- Theexciton boser: Cooperative phenomena in microcavity excitons.- Rabi-splitting and photon-number squeezing due to excitons in microcavities.- Quantum optics using defect modes in photonic band-gap structures.- Limits of quantum computing: Analysis of a concrete algorithm.- Cooperative and coherent optical processes in field confining structures.- Localized structures in nonlinear optical systems and materials.- Dynamical chaos for the strongly coupled microcavity-quantum well-exciton system.