Modern Analysis and Topology: Universitext
Autor Norman R. Howesen Limba Engleză Paperback – 23 iun 1995
Din seria Universitext
- 13% Preț: 353.48 lei
- 15% Preț: 534.64 lei
- 15% Preț: 544.04 lei
- Preț: 360.93 lei
- 17% Preț: 427.32 lei
- Preț: 457.81 lei
- 17% Preț: 365.34 lei
- Preț: 352.46 lei
- Preț: 662.12 lei
- 15% Preț: 497.21 lei
- 15% Preț: 725.04 lei
- 17% Preț: 427.68 lei
- Preț: 380.52 lei
- 17% Preț: 364.56 lei
- Preț: 396.53 lei
- Preț: 371.98 lei
- 13% Preț: 355.51 lei
- 17% Preț: 364.81 lei
- Preț: 355.83 lei
- 17% Preț: 426.76 lei
- Preț: 623.72 lei
- Preț: 479.77 lei
- 20% Preț: 569.54 lei
- 20% Preț: 628.22 lei
- 15% Preț: 501.02 lei
- 17% Preț: 369.06 lei
- Preț: 411.64 lei
- 17% Preț: 394.41 lei
- Preț: 372.86 lei
- Preț: 288.94 lei
- Preț: 373.51 lei
- Preț: 438.41 lei
- Preț: 375.96 lei
- 15% Preț: 524.75 lei
- 15% Preț: 487.68 lei
- 15% Preț: 466.84 lei
- Preț: 383.18 lei
- Preț: 475.98 lei
- 15% Preț: 461.59 lei
- 15% Preț: 632.64 lei
- Preț: 408.06 lei
- 15% Preț: 592.12 lei
- 20% Preț: 501.67 lei
- 15% Preț: 578.46 lei
- Preț: 375.21 lei
- Preț: 481.66 lei
- Preț: 485.63 lei
- 20% Preț: 326.68 lei
- 15% Preț: 465.38 lei
Preț: 390.94 lei
Nou
Puncte Express: 586
Preț estimativ în valută:
74.85€ • 77.94$ • 62.10£
74.85€ • 77.94$ • 62.10£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387979861
ISBN-10: 0387979867
Pagini: 444
Ilustrații: XXVIII, 444 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387979867
Pagini: 444
Ilustrații: XXVIII, 444 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1: Metric Spaces.- 1.1 Metric and Pseudo-Metric Spaces.- 1.2 Stone’s Theorem.- 1.3 The Metrization Problem.- 1.4 Topology of Metric Spaces.- 1.5 Uniform Continuity and Uniform Convergence.- 1.6 Completeness.- 1.7 Completions.- 2: Uniformities.- 2.1 Covering Uniformities.- 2.2 Uniform Continuity.- 2.3 Uniformizability and Complete Regularity.- 2.4 Normal Coverings.- 3: Transfinite Sequences.- 3.1 Background.- 3.2 Transfinite Sequences in Uniform Spaces.- 3.3 Transfinite Sequences and Topologies.- 4: Completeness, Cofinal Completeness And Uniform Paracompactness.- 4.1 Introduction.- 4.2 Nets.- 4.3 Completeness, Cofinal Completeness and Uniform Paracompactness.- 4.4 The Completion of a Uniform Space.- 4.5 The Cofinal Completion or Uniform Paracompactification.- 5: Fundamental Constructions.- 5.1 Introduction.- 5.2 Limit Uniformities.- 5.3 Subspaces, Sums, Products and Quotients.- 5.4 Hyperspaces.- 5.5 Inverse Limits and Spectra.- 5.6 The Locally Fine Coreflection.- 5.7 Categories and Functors.- 6: Paracompactifications.- 6.1 Introduction.- 6.2 Compactifications.- 6.3 Tamano’s Completeness Theorem.- 6.4 Points at Infinity and Tamano’s Theorem.- 6.5 Paracompactifications.- 6.6 The Spectrum of ?X.- 6.7 The Tamano-Morita Paracompactification.- 7: Realcompactifications.- 7.1 Introduction.- 7.2 Realcompact Spaces.- 7.3 Realcompactifications.- 7.4 Realcompact Spaces and Lindelöf Spaces.- 7.5 Shirota’s Theorem.- 8: Measure And Integration.- 8.1 Introduction.- 8.2 Measure Rings and Algebras.- 8.3 Properties of Measures.- 8.4 Outer Measures.- 8.5 Measurable Functions.- 8.6 The Lebesgue Integral.- 8.7 Negligible Sets.- 8.8 Linear Functional and Integrals.- 9: Haar Measure In Uniform Spaces.- 9.1 Introduction.- 9.2 Haar Integrals and Measures.- 9.3 Topological Groups andUniqueness of Haar Measures.- 10: Uniform Measures.- 10.1 Introduction.- 10.2 Prerings and Loomis Contents.- 10.3 The Haar Functions.- 10.4 Invariance and Uniqueness of Loomis Contents and Haar Measures.- 10.5 Local Compactness and Uniform Measures.- 11: Spaces Of Functions.- 11.1 LP -spaces.- 11.2 The Space L2(?) and Hilbert Spaces.- 11.3 The Space LP(?) and Banach Spaces.- 11.4 Uniform Function Spaces.- 12: Uniform Differentiation.- 12.1 Complex Measures.- 12.2 The Radon-Nikodym Derivative.- 12.3 Decompositions of Measures and Complex Integration.- 12.4 The Riesz Representation Theorem.- 12.5 Uniform Derivatives of Measures.