Cantitate/Preț
Produs

Motor Neurobiology of the Spinal Cord: Frontiers in Neuroscience

Editat de Timothy C. Cope
en Limba Engleză Hardback – 26 iun 2001
Traumatic injuries of the spinal cord continue to be the most common cause of permanent paralysis in young adults in the United States. New information has emerged on the response of spinal neurons to injury of either the spinal cord or peripheral nerves demonstrating that dendrites of injured motoneurons take on characteristics of axons. These and other new developments have helped to promote an exciting new era in the study of spinal cord neurobiology.

Motor Neurobiology of the Spinal Cord provides a description of the recent conceptual and technical advances in the field. It provides a description of the new experimental tools available for investigating the neuronal properties that allow populations of spinal cord neurons to control muscles responsible for limb movements and posture. It covers topics ranging from genetics to kinematics and examines cells, tissues, or whole animals in species ranging from fish to humans that are normal, injured, or diseased.

By integrating data derived from many new approaches, you'll learn about how spinal cord circuits operate under a variety conditions and about new and exciting inroads being made in motor neurobiology of the spinal cord. Motor Neurobiology of the Spinal Cord elucidates concepts and principles relevant to function and structure throughout the nervous system and presents information about changes induced by injury and disease.
Citește tot Restrânge

Din seria Frontiers in Neuroscience

Preț: 33132 lei

Preț vechi: 37568 lei
-12% Nou

Puncte Express: 497

Preț estimativ în valută:
6341 6609$ 5279£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780849300066
ISBN-10: 0849300061
Pagini: 360
Ilustrații: 10 equations; 5 Halftones, black and white; 4 Tables, black and white; 130 Illustrations, black and white
Dimensiuni: 156 x 234 x 24 mm
Greutate: 0.83 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Frontiers in Neuroscience


Public țintă

Professional

Cuprins

Spinal Motoneurons: Synaptic Inputs and Receptor Organizations. 5-HT Receptors and the Neuromodulatory Control of Spinal Cord Function. Advances in Measuring Active Dendrite Currents in Spinal Motoneurons in vivo. Optical and Genetic Approaches Toward Understanding Spinal Circuits. Investigating the Synaptic Control of Human Motoneurons: New Techniques, Analyses, and Insights from Animal Models. The Use of Correlational Methods to Investigate the Organization of Spinal Networks for Pattern Generation. Sensory-Motor Experience During the Development of Motility in Chick Embryos. Transformation of Descending Commands into Muscle Activity by Spinal Interneurons in Behaving Primates. Muscle Afferent Feedback During Human Walking. Canine Motor Neuron Disease: A View from the Motor Unit. Structural Plasticity of Motoneuron Dendrites Caused by Axotomy. How Does Nerve Injury Strengthen La-Motoneuron Synapses? The Organization of Distributed Proprioceptive Feedback in the Chronic Spinal Cat.

Recenzii

"…an update on the recent advances of the biology of the motor spinal cord…The authors clearly meet their objectives…a very good book…well-written…3 stars."
- Celso Agner, MSc, MD, Albany Medical Center, Doody's Notes

Notă biografică

Timothy C. Cope is a professor of physiology and a member of the Neuroscience Program at Emory University in Atlanta, Georgia, where he lives with his wife, Meredith and children Russ, Audrey, and Cassie. He earned B.S. and M.S. degrees from the University of California at Los Angeles and a Ph.D. in physiology from Duke University in 1980. Following postdoctoral studies at the University of Washington and the University of California at Los Angeles from 1980–1983, he held faculty positions at the University of Texas, Southwestern Medical School and at Hahnemann University.

Descriere

Motor Neurobiology of the Spinal Cord provides a comprehensive description of the experimental tools available for investigating the neuronal properties that allow populations of spinal cord neurons to control muscles responsible for limb movements and posture control. By integrating data from many new approaches, this text demonstrates how spinal cord circuits operate under a variety conditions and explores the new and exciting developments that are being made in motor neurobiology of the spinal cord. It also elucidates concepts and principles relevant to function and structure throughout the nervous system and presents information about changes induced by injury and disease.