Multiple Classifier Systems: Third International Workshop, MCS 2002, Cagliari, Italy, June 24-26, 2002. Proceedings: Lecture Notes in Computer Science, cartea 2364
Editat de Fabio Roli, Josef Kittleren Limba Engleză Paperback – 12 iun 2002
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (3) | 335.18 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 12 iun 2002 | 335.18 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 14 iun 2000 | 338.68 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 20 iun 2001 | 341.30 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 307.71 lei
- 20% Preț: 438.69 lei
- 20% Preț: 645.28 lei
- Preț: 410.88 lei
- 15% Preț: 580.46 lei
- 17% Preț: 427.22 lei
- 20% Preț: 596.46 lei
- Preț: 381.21 lei
- 20% Preț: 353.50 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 309.90 lei
- 20% Preț: 583.40 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 310.26 lei
- 20% Preț: 655.02 lei
- 20% Preț: 580.93 lei
- 20% Preț: 340.32 lei
- 15% Preț: 438.59 lei
- 20% Preț: 591.51 lei
- 20% Preț: 649.49 lei
- 20% Preț: 337.00 lei
- Preț: 449.57 lei
- 20% Preț: 607.39 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 763.23 lei
- 20% Preț: 453.32 lei
- 20% Preț: 575.48 lei
- 20% Preț: 585.88 lei
- 20% Preț: 825.93 lei
- 20% Preț: 763.23 lei
- 17% Preț: 360.19 lei
- 20% Preț: 1183.14 lei
- 20% Preț: 340.32 lei
- 20% Preț: 504.57 lei
- 20% Preț: 369.12 lei
- 20% Preț: 583.40 lei
- 20% Preț: 343.62 lei
- 20% Preț: 350.21 lei
- 20% Preț: 764.89 lei
- 20% Preț: 583.40 lei
- Preț: 389.48 lei
- 20% Preț: 341.95 lei
- 20% Preț: 238.01 lei
- 20% Preț: 538.29 lei
Preț: 335.18 lei
Preț vechi: 418.98 lei
-20% Nou
Puncte Express: 503
Preț estimativ în valută:
64.14€ • 66.59$ • 53.49£
64.14€ • 66.59$ • 53.49£
Carte tipărită la comandă
Livrare economică 22 martie-05 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540438182
ISBN-10: 3540438181
Pagini: 352
Ilustrații: X, 342 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:2002
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540438181
Pagini: 352
Ilustrații: X, 342 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:2002
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Papers.- Multiclassifier Systems: Back to the Future.- Support Vector Machines, Kernel Logistic Regression and Boosting.- Multiple Classification Systems in the Context of Feature Extraction and Selection.- Bagging and Boosting.- Boosted Tree Ensembles for Solving Multiclass Problems.- Distributed Pasting of Small Votes.- Bagging and Boosting for the Nearest Mean Classifier: Effects of Sample Size on Diversity and Accuracy.- Highlighting Hard Patterns via AdaBoost Weights Evolution.- Using Diversity with Three Variants of Boosting: Aggressive, Conservative, and Inverse.- Ensemble Learning and Neural Networks.- Multistage Neural Network Ensembles.- Forward and Backward Selection in Regression Hybrid Network.- Types of Multinet System.- Discriminant Analysis and Factorial Multiple Splits in Recursive Partitioning for Data Mining.- Design Methodologies.- New Measure of Classifier Dependency in Multiple Classifier Systems.- A Discussion on the Classifier Projection Space for Classifier Combining.- On the General Application of the Tomographic Classifier Fusion Methodology.- Post-processing of Classifier Outputs in Multiple Classifier Systems.- Combination Strategies.- Trainable Multiple Classifier Schemes for Handwritten Character Recognition.- Generating Classifier Ensembles from Multiple Prototypes and Its Application to Handwriting Recognition.- Adaptive Feature Spaces for Land Cover Classification with Limited Ground Truth Data.- Stacking with Multi-response Model Trees.- On Combining One-Class Classifiers for Image Database Retrieval.- Analysis and Performance Evaluation.- Bias—Variance Analysis and Ensembles of SVM.- An Experimental Comparison of Fixed and Trained Fusion Rules for Crisp Classifier Outputs.- Reduction of the Boasting Bias of Linear Experts.-Analysis of Linear and Order Statistics Combiners for Fusion of Imbalanced Classifiers.- Applications.- Boosting and Classification of Electronic Nose Data.- Content-Based Classification of Digital Photos.- Classifier Combination for In Vivo Magnetic Resonance Spectra of Brain Tumours.- Combining Classifiers of Pesticides Toxicity through a Neuro-fuzzy Approach.- A Multi-expert System for Movie Segmentation.- Decision Level Fusion of Intramodal Personal Identity Verification Experts.- An Experimental Comparison of Classifier Fusion Rules for Multimodal Personal Identity Verification Systems.
Caracteristici
Includes supplementary material: sn.pub/extras