Noncommutative Harmonic Analysis: In Honor of Jacques Carmona: Progress in Mathematics, cartea 220
Editat de Patrick Delorme, Michèle Vergneen Limba Engleză Paperback – 21 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 401.61 lei 6-8 săpt. | |
Birkhäuser Boston – 21 oct 2012 | 401.61 lei 6-8 săpt. | |
Hardback (1) | 407.56 lei 6-8 săpt. | |
Birkhäuser Boston – 10 dec 2003 | 407.56 lei 6-8 săpt. |
Din seria Progress in Mathematics
- 24% Preț: 740.79 lei
- Preț: 308.20 lei
- 20% Preț: 695.88 lei
- Preț: 362.51 lei
- Preț: 308.13 lei
- 18% Preț: 749.27 lei
- 9% Preț: 766.41 lei
- 20% Preț: 631.08 lei
- 24% Preț: 638.86 lei
- 15% Preț: 580.82 lei
- Preț: 392.37 lei
- Preț: 395.09 lei
- Preț: 376.80 lei
- Preț: 390.25 lei
- 18% Preț: 729.53 lei
- 15% Preț: 652.49 lei
- 15% Preț: 649.22 lei
- 18% Preț: 897.95 lei
- Preț: 385.08 lei
- Preț: 391.02 lei
- Preț: 378.54 lei
- 15% Preț: 531.59 lei
- 15% Preț: 642.83 lei
- 15% Preț: 650.69 lei
- Preț: 381.21 lei
- Preț: 392.37 lei
- Preț: 398.53 lei
- 15% Preț: 699.28 lei
- Preț: 416.92 lei
- Preț: 385.84 lei
- 18% Preț: 902.65 lei
- 18% Preț: 802.28 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1129.83 lei
- 15% Preț: 494.03 lei
- 15% Preț: 593.08 lei
Preț: 401.61 lei
Nou
Puncte Express: 602
Preț estimativ în valută:
76.88€ • 79.11$ • 64.81£
76.88€ • 79.11$ • 64.81£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461264897
ISBN-10: 1461264898
Pagini: 532
Ilustrații: XVII, 509 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.74 kg
Ediția:Softcover reprint of the original 1st ed. 2004
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 1461264898
Pagini: 532
Ilustrații: XVII, 509 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.74 kg
Ediția:Softcover reprint of the original 1st ed. 2004
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Morris identities and the total residue for a system of type Ar.- A reduction theorem for the unitary dual of U(p, q).- Symmetric spaces and star representations III. The Poincaré disc.- Local zeta functions for a class of symmetric spaces.- Quelques remarques sur les distributions invariantes dans les algèbres de Lie réductives.- Espace des coefficients de représentations admissibles d’un groupe réductif p-adique.- Dualité entre G/G? et Ie groupe renversé ?G?.- Sur certains espaces d’homologie relative d’algèbres de Lie: cas des polarisations positives.- La formule de Plancherel pour les groupes de Lie presque algébrique réels.- Analytic continuation of nonholomorphic discrete series for classical groups.- A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil theorem.- Representations of SL2and the distribution of points in ?n.- A localization argument for characters of reductive Lie groups: an introduction and examples.- Intertwining ladder representations for SU(p, q)into Dolbeault cohomology.- Summation formulas, from Poisson and Voronoi to the present.- McKay’s correspondence and characters of finite subgroups of SU(2).- Méthodes de Kashiwara-Vergne- Rouvière pour les espaces symétriques.- Einstein integrals and induction of relations.
Textul de pe ultima copertă
This volume is devoted to the theme of Noncommutative Harmonic Analysis and consists of articles in honor of Jacques Carmona, whose scientific interests range through all aspects of Lie group representations. The topics encompass the theory of representations of reductive Lie groups, and especially the determination of the unitary dual, the problem of geometric realizations of representations, harmonic analysis on reductive symmetric spaces, the study of automorphic forms, and results in harmonic analysis that apply to the Langlands program.
General Lie groups are also discussed, particularly from the orbit method perspective, which has been a constant source of inspiration for both the theory of reductive Lie groups and for general Lie groups. Also covered is Kontsevich quantization, which has appeared in recent years as a powerful tool.
Contributors: V. Baldoni-Silva; D. Barbasch; P. Bieliavsky; N. Bopp; A. Bouaziz; P. Delorme; P. Harinck; A. Hersant; M.S. Khalgui; A.W. Knapp; B. Kostant; J. Kuttler; M. Libine; J.D. Lorch; L.A. Mantini; S.D. Miller; J.D. Novak; M.-N. Panichi; M. Pevzner; W. Rossmann; H. Rubenthaler; W. Schmid; P. Torasso; C. Torossian; E.P. van den Ban; M. Vergne; and N.R. Wallach
General Lie groups are also discussed, particularly from the orbit method perspective, which has been a constant source of inspiration for both the theory of reductive Lie groups and for general Lie groups. Also covered is Kontsevich quantization, which has appeared in recent years as a powerful tool.
Contributors: V. Baldoni-Silva; D. Barbasch; P. Bieliavsky; N. Bopp; A. Bouaziz; P. Delorme; P. Harinck; A. Hersant; M.S. Khalgui; A.W. Knapp; B. Kostant; J. Kuttler; M. Libine; J.D. Lorch; L.A. Mantini; S.D. Miller; J.D. Novak; M.-N. Panichi; M. Pevzner; W. Rossmann; H. Rubenthaler; W. Schmid; P. Torasso; C. Torossian; E.P. van den Ban; M. Vergne; and N.R. Wallach
Caracteristici
International experts on harmonic analysis have contributed to this book Explores Kontsevich quantization, which has appeared in recent years as a powerful tool