Cantitate/Preț
Produs

Nonlinear Statistical Models: Mathematics and Its Applications, cartea 254

Autor Andrej Pázman
en Limba Engleză Hardback – 30 iun 1993
Nonlinear statistical modelling is an area of growing importance. This monograph presents mostly new results and methods concerning the nonlinear regression model.
Among the aspects which are considered are linear properties of nonlinear models, multivariate nonlinear regression, intrinsic and parameter effect curvature, algorithms for calculating the L2-estimator and both local and global approximation. In addition to this a chapter has been added on the large topic of nonlinear exponential families.
The volume will be of interest to both experts in the field of nonlinear statistical modelling and to those working in the identification of models and optimization, as well as to statisticians in general.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 119104 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 5 dec 2010 119104 lei  6-8 săpt.
Hardback (1) 119598 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 30 iun 1993 119598 lei  6-8 săpt.

Din seria Mathematics and Its Applications

Preț: 119598 lei

Preț vechi: 145851 lei
-18% Nou

Puncte Express: 1794

Preț estimativ în valută:
22885 24168$ 19045£

Carte tipărită la comandă

Livrare economică 11-25 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792322474
ISBN-10: 0792322479
Pagini: 260
Ilustrații: X, 260 p.
Dimensiuni: 156 x 234 x 22 mm
Greutate: 0.53 kg
Ediția:1993
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1 Linear regression models.- 2 Linear methods in nonlinear regression models.- 3 Univariate regression models.- 4 The structure of a multivariate nonlinear regression model and properties of L2 estimators.- 5 Nonlinear regression models: computation of estimators and curvatures.- 6 Local approximations of probability densities and moments of estimators.- 7 Global approximations of densities of L2 estimators.- 8 Statistical consequences of global approximations especially in flat models.- 9 Nonlinear exponential families.- References.- Basic symbols.