Cantitate/Preț
Produs

Nonparametric Statistical Methods Using R: Chapman & Hall/CRC Texts in Statistical Science

Autor John Kloke, Joseph W. McKean
en Limba Engleză Hardback – 9 oct 2014

A Practical Guide to Implementing Nonparametric and Rank-Based Procedures

Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm.

The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data.

The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 31098 lei  6-8 săpt.
  CRC Press – 18 dec 2020 31098 lei  6-8 săpt.
Hardback (1) 59204 lei  6-8 săpt.
  CRC Press – 9 oct 2014 59204 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Texts in Statistical Science

Preț: 59204 lei

Preț vechi: 65059 lei
-9% Nou

Puncte Express: 888

Preț estimativ în valută:
11329 11919$ 9380£

Carte tipărită la comandă

Livrare economică 14-28 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781439873434
ISBN-10: 1439873437
Pagini: 288
Ilustrații: 58 black & white illustrations, 13 black & white tables
Dimensiuni: 156 x 234 x 19 mm
Greutate: 0.46 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science


Cuprins

Getting Started with R, Basic Statistics. Two-Sample Problems. Regression I. ANOVA and ANCOVA. Time-to-Event Analysis. Regression II. Cluster Correlated Data. Bibliography. Index.

Notă biografică

John Kloke is a biostatistician and assistant scientist at the University of Wisconsin-Madison. He has held faculty positions at the University of Pittsburgh, Bucknell University, and Pomona College. An R user for more than 15 years, he is an author and maintainer of numerous R packages, including Rfit and npsm. He has published papers on nonparametric rank-based estimation, including analysis of cluster correlated data. Joseph W. McKean is a professor of statistics at Western Michigan University. He has published many papers on nonparametric and robust statistical procedures and has co-authored several books, including Robust Nonparametric Statistical Methods and Introduction to Mathematical Statistics. He is an associate editor of several statistics journals and a fellow of the American Statistical Association.


Recenzii

"In general, this textbook is a good addition to the sparse offerings in entry-level nonparametrics. This book would be especially good for the shelf of anyone who already knows nonparametrics, but wants a reference for how to apply those techniques in R. As R becomes more ubiquitous and data science grows into its own, I think this approach will become more common and this book will be shown to be ahead of its time." (The American Statistician)

Descriere

A Practical Guide to Implementing Nonparametric and Rank-Based Procedures

Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm.

The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data.

The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.