A Primer on Linear Models: Chapman & Hall/CRC Texts in Statistical Science
Autor John F. Monahanen Limba Engleză Hardback – 9 aug 2017
This book enables complete comprehension of the material by taking a general, unifying approach to the theory, fundamentals, and exact results of linear models.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 455.51 lei 43-57 zile | |
CRC Press – 31 mar 2008 | 455.51 lei 43-57 zile | |
Hardback (1) | 1013.16 lei 43-57 zile | |
CRC Press – 9 aug 2017 | 1013.16 lei 43-57 zile |
Din seria Chapman & Hall/CRC Texts in Statistical Science
- 5% Preț: 635.71 lei
- 8% Preț: 572.20 lei
- 9% Preț: 617.40 lei
- 8% Preț: 444.23 lei
- 9% Preț: 595.00 lei
- Preț: 356.63 lei
- 8% Preț: 570.43 lei
- 9% Preț: 681.68 lei
- 9% Preț: 602.05 lei
- 8% Preț: 551.97 lei
- 5% Preț: 374.41 lei
- 9% Preț: 613.84 lei
- 8% Preț: 552.91 lei
- 9% Preț: 600.69 lei
- 8% Preț: 515.50 lei
- 8% Preț: 547.27 lei
- 8% Preț: 544.47 lei
- 8% Preț: 548.93 lei
- Preț: 356.63 lei
- 8% Preț: 496.94 lei
- 9% Preț: 608.07 lei
- 8% Preț: 419.81 lei
- 9% Preț: 610.93 lei
- 20% Preț: 508.92 lei
- 9% Preț: 608.07 lei
- 8% Preț: 496.37 lei
- 9% Preț: 1260.30 lei
- 8% Preț: 547.09 lei
- Preț: 357.59 lei
- 8% Preț: 548.14 lei
- 9% Preț: 772.11 lei
- Preț: 341.42 lei
- 8% Preț: 549.91 lei
- 8% Preț: 444.54 lei
- 9% Preț: 641.60 lei
- Preț: 389.37 lei
- Preț: 349.09 lei
- Preț: 316.73 lei
- Preț: 341.85 lei
- Preț: 348.11 lei
- 9% Preț: 595.90 lei
- 9% Preț: 593.60 lei
- Preț: 349.09 lei
- 9% Preț: 599.55 lei
- 11% Preț: 671.27 lei
- 8% Preț: 510.12 lei
- 8% Preț: 511.06 lei
Preț: 1013.16 lei
Preț vechi: 1366.53 lei
-26% Nou
Puncte Express: 1520
Preț estimativ în valută:
193.90€ • 201.41$ • 161.06£
193.90€ • 201.41$ • 161.06£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781138469532
ISBN-10: 113846953X
Pagini: 304
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science
Locul publicării:Boca Raton, United States
ISBN-10: 113846953X
Pagini: 304
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science
Locul publicării:Boca Raton, United States
Public țintă
UndergraduateCuprins
Preface. Examples of the General Linear Model. The Linear Least Squares Problem. Estimability and Least Squares Estimators. Gauss-Markov Model. Distributional Theory. Statistical Inference. Further Topics in Testing. Variance Components and Mixed Models. The Multivariate Linear Model. Appendices. Bibliography.
Recenzii
"I found the book very helpful. … the result is very nice, very readable. In particular, I like the idea of avoiding leaps in the development and proofs, or referring to other sources for the details of the proofs. This is a useful well-written instructive book."
~International Statistical Review"This work provides a brief, and also complete, foundation for the theory of basic linear models . . . can be used for graduate courses on linear models."
~Nicoleta Breaz, Zentralblatt Math
". . . well written . . . would serve well as the textbook for an introductory course in linear models, or as references for researchers who would like to review the theory of linear models."
~Justine Shults, Journal of Biopharmaceutical Statistics
~International Statistical Review"This work provides a brief, and also complete, foundation for the theory of basic linear models . . . can be used for graduate courses on linear models."
~Nicoleta Breaz, Zentralblatt Math
". . . well written . . . would serve well as the textbook for an introductory course in linear models, or as references for researchers who would like to review the theory of linear models."
~Justine Shults, Journal of Biopharmaceutical Statistics
Descriere
Employing non-full-rank design matrices throughout, this book enables understanding of basic linear models. This book introduces the basic algebra and geometry of the linear least squares problem, before delving into estimability and the Gauss-Markov model.