Nuclear Locally Convex Spaces: ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE, cartea 66
Autor Albrecht Pietsch Traducere de W.H. Ruckleen Limba Engleză Paperback – 9 apr 2012
Din seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
- Preț: 434.61 lei
- Preț: 402.56 lei
- Preț: 476.36 lei
- Preț: 370.67 lei
- Preț: 483.47 lei
- 15% Preț: 692.18 lei
- Preț: 339.94 lei
- Preț: 376.71 lei
- Preț: 376.55 lei
- 15% Preț: 625.74 lei
- Preț: 481.66 lei
- Preț: 381.27 lei
- 15% Preț: 485.27 lei
- Preț: 386.77 lei
- Preț: 371.63 lei
- Preț: 377.88 lei
- Preț: 406.15 lei
- Preț: 373.87 lei
- Preț: 405.76 lei
- Preț: 379.18 lei
- Preț: 408.44 lei
- Preț: 370.28 lei
- Preț: 373.13 lei
- Preț: 475.17 lei
- Preț: 407.48 lei
- 15% Preț: 569.92 lei
- 15% Preț: 625.92 lei
- Preț: 412.03 lei
- 18% Preț: 1089.95 lei
- 15% Preț: 568.64 lei
- Preț: 375.05 lei
- Preț: 376.71 lei
- Preț: 369.17 lei
- Preț: 168.81 lei
- Preț: 147.48 lei
- Preț: 374.64 lei
- Preț: 406.35 lei
- Preț: 403.31 lei
- Preț: 374.84 lei
- Preț: 376.71 lei
- Preț: 472.77 lei
- Preț: 369.33 lei
- Preț: 375.96 lei
- Preț: 377.10 lei
- Preț: 178.65 lei
- Preț: 401.92 lei
- Preț: 353.54 lei
- Preț: 370.13 lei
Preț: 376.71 lei
Nou
Puncte Express: 565
Preț estimativ în valută:
72.09€ • 75.11$ • 59.94£
72.09€ • 75.11$ • 59.94£
Carte tipărită la comandă
Livrare economică 08-22 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642876677
ISBN-10: 3642876676
Pagini: 208
Ilustrații: X, 196 p. 1 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642876676
Pagini: 208
Ilustrații: X, 196 p. 1 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
0. Foundations.- 0.1. Topological Spaces.- 0.2. Metric Spaces.- 0.3. Linear Spaces.- 0.4. Semi-Norms.- 0.5. Locally Convex Spaces.- 0.6. The Topological Dual of a Locally Convex Space.- 0.7. Special Locally Convex Spaces.- 0.8. Banach Spaces.- 0.9. Hilbert Spaces.- 0.10. Continuous Linear Mappings in Locally Convex Spaces.- 0.11. The Normed Spaces Associated with a Locally Convex Space.- 0.12. Radon Measures.- 1. Summable Families.- 1.1. Summable Families of Numbers.- 1.2. Weakly Summable Families in Locally Convex Spaces.- 1.3. Summable Families in Locally Convex Spaces.- 1.4. Absolutely Summable Families in Locally Convex Spaces.- 1.5. Totally Summable Families in Locally Convex Spaces.- 1.6. Finite Dimensional Families in Locally Convex Spaces.- 2. Absolutely Summing Mappings.- 2.1. Absolutely Summing Mappings in Locally Convex Spaces.- 2.2. Absolutely Summing Mappings in Normed Spaces.- 2.3. A Characterization of Absolutely Summing Mappings in Normed Spaces.- 2.4. A Special Absolutely Summing Mappings.- 2.5. Hilbert-Schmidt Mappings.- 3. Nuclear Mappings.- 3.1. Nuclear Mappings in Normed Spaces.- 3.2. Quasinuclear Mappings in Normed Spaces.- 3.3. Products of Quasinuclear and Absolutely Summing Mappings in Normed Spaces.- 3.4. The Theorem of Dvoretzky and Rogers.- 4. Nuclear Locally Convex Spaces.- 4.1. Definition of Nuclear Locally Convex Spaces.- 4.2. Summable Families in Nuclear Locally Convex Spaces.- 4.3. The Topological Dual of Nuclear Locally Convex Spaces.- 4.4. Properties of Nuclear Locally Convex Spaces.- 5. Permanence Properties of Nuclearity.- 5.1. Subspaces and Quotient Spaces.- 5.2. Topological Products and Sums.- 5.3. Complete Hulls.- 5.4. Locally Convex Tensor Products.- 5.5. Spaces of Continuous Linear Mappings.- 6. Examples of Nuclear Locally ConvexSpaces.- 6.1. Sequence Spaces.- 6.2. Spaces of Infinitely Differentiable Functions.- 6.3. Spaces of Harmonic Functions.- 6.4. Spaces of Analytic Functions.- 7. Locally Convex Tensor Products.- 7.1. Definition of Locally Convex Tensor Products.- 7.2. Special Locally Convex Tensor Products.- 7.3. A Characterization of Nuclear Locally Convex Spaces.- 7.4. The Kernel Theorem.- 7.5. The Complete rc-Tensor Product of Normed Spaces.- 8. Operators of Type lp and s.- 8.1. The Approximation Numbers of Continuous Linear Mappings in Normed Spaces.- 8.2. Mappings of Type lp.- 8.3. The Approximation Numbers of Compact Mappings in Hilbert Spaces.- 8.4. Nuclear and Absolutely Summing Mappings.- 8.5. Mappings of Type s.- 8.6. A Characterization of Nuclear Locally Convex Spaces.- 9. Diametral and Approximative Dimension.- 9.1. The Diameter of Bounded Subsets in Normed Spaces.- 9.2. The Diametral Dimension of Locally Convex Spaces.- 9.3. The Diametral Dimension of Power Series Spaces.- 9.4. The Diametral Dimension of Nuclear Locally Convex Spaces …..- 9.5. A Characterization of Dual Nuclear Locally Convex Spaces.- 9.6. The ?-Entropy of Bounded Subsets in Normed Spaces.- 9.7. The Approximative Dimension of Locally Convex Spaces..- 9.8. The Approximative Dimension of Nuclear Locally Convex Spaces.- 10. Nuclear Locally Convex Spaces with Basis.- 10.1. Locally Convex Spaces with Basis.- 10.2. Representation of Nuclear Locally Convex Spaces with Basis.- 10.3. Bases in Special Nuclear Locally Convex Spaces.- 11. Universal Nuclear Locally Convex Spaces.- 11.1. Imbedding in the Product Space (?)1.- 11.2. Imbedding in the Product Space(?)1.- Table of Symbols.