Cantitate/Preț
Produs

Number Fields and Function Fields – Two Parallel Worlds: Progress in Mathematics, cartea 239

Editat de Gerard B.M. van der Geer, BJJ Moonen, René Schoof
en Limba Engleză Hardback – 14 sep 2005
Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject.
As a deeper understanding of this analogy could have tremendous consequences, the search for a unified approach has become a sort of Holy Grail. The arrival of Arakelov's new geometry that tries to put the archimedean places on a par with the finite ones gave a new impetus and led to spectacular success in Faltings' hands. There are numerous further examples where ideas or techniques from the more geometrically-oriented world of function fields have led to new insights in the more arithmetically-oriented world of number fields, or vice versa.
These invited articles by leading researchers in the field explore various aspects of the parallel worlds of function fields and number fields. Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives.
This volume is aimed at a wide audience of graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections.
Citește tot Restrânge

Din seria Progress in Mathematics

Preț: 72035 lei

Preț vechi: 87848 lei
-18% Nou

Puncte Express: 1081

Preț estimativ în valută:
13792 14362$ 11443£

Carte tipărită la comandă

Livrare economică 15 februarie-01 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817643973
ISBN-10: 0817643974
Pagini: 321
Ilustrații: XIII, 321 p. With online files/update.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.59 kg
Ediția:2005
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

Arithmetic over Function Fields: A Cohomological Approach.- Algebraic Stacks Whose Number of Points over Finite Fields is a Polynomial.- On a Problem of Miyaoka.- Monodromy Groups Associated to Non-Isotrivial Drinfeld Modules in Generic Characteristic.- Irreducible Values of Polynomials: A Non-Analogy.- Schemes over .- Line Bundles and p-Adic Characters.- Arithmetic Eisenstein Classes on the Siegel Space: Some Computations.- Uniformizing the Stacks of Abelian Sheaves.- Faltings’ Delta-Invariant of a Hyperelliptic Riemann Surface.- A Hirzebruch Proportionality Principle in Arakelov Geometry.- On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields.- A Note on Absolute Derivations and Zeta Functions.- On the Order of Certain Characteristic Classes of the Hodge Bundle of Semi-Abelian Schemes.- A Note on the Manin-Mumford Conjecture.

Recenzii

From the reviews:
“I thoroughly enjoyed the book; referring to it now and then through the various pages has been a wonderful experience. … It is a stimulating and well-researched volume, aimed at a wide audience of gradute students, mathematicians, and researchers interested in geometry and arithmetic and their connections. In short, it places a most engaging progress in mathematics volume in the hands of the target audience who will enjoy, not just profit from, the different aspects of the involved parallelism.” (Current Engineering Practice, Vol. 48, 2005-2006)

Textul de pe ultima copertă

Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject.
As a deeper understanding of this analogy could have tremendous consequences, the search for a unified approach has become a sort of Holy Grail. The arrival of Arakelov's new geometry that tries to put the archimedean places on a par with the finite ones gave a new impetus and led to spectacular success in Faltings' hands. There are numerous further examples where ideas or techniques from the more geometrically-oriented world of function fields have led to new insights in the more arithmetically-oriented world of number fields, or vice versa.
These invited articles by leading researchers in the field explore various aspects of the parallel worlds of function fields and number fields. Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives.
This volume is aimed at a wide audience of graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections.
Contributors: G. Böckle; T. van den Bogaart; H. Brenner; F. Breuer; K. Conrad; A. Deitmar; C. Deninger; B. Edixhoven; G. Faltings; U. Hartl; R. de Jong; K. Köhler; U. Kühn; J.C. Lagarias; V. Maillot; R. Pink; D. Roessler; and A. Werner.

Caracteristici

Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections