Numerical Approximation of the Magnetoquasistatic Model with Uncertainties: Applications in Magnet Design: Springer Theses
Autor Ulrich Römeren Limba Engleză Hardback – 9 aug 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 599.32 lei 6-8 săpt. | |
Springer International Publishing – 22 apr 2018 | 599.32 lei 6-8 săpt. | |
Hardback (1) | 605.06 lei 6-8 săpt. | |
Springer International Publishing – 9 aug 2016 | 605.06 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1093.02 lei
- Preț: 369.18 lei
- 15% Preț: 612.38 lei
- 18% Preț: 1155.83 lei
- Preț: 378.35 lei
- 18% Preț: 945.09 lei
- 18% Preț: 891.29 lei
- Preț: 544.53 lei
- 15% Preț: 609.22 lei
- 15% Preț: 608.78 lei
- 15% Preț: 605.10 lei
- 20% Preț: 558.82 lei
- 18% Preț: 892.92 lei
- 18% Preț: 1056.46 lei
- 15% Preț: 606.28 lei
- 15% Preț: 606.28 lei
- Preț: 276.68 lei
- 15% Preț: 602.88 lei
- 18% Preț: 844.04 lei
- 15% Preț: 607.07 lei
- Preț: 369.27 lei
- 20% Preț: 563.89 lei
- Preț: 372.48 lei
- 15% Preț: 604.28 lei
- 15% Preț: 607.57 lei
- 18% Preț: 1052.70 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1045.22 lei
- 18% Preț: 1051.19 lei
- 18% Preț: 1161.04 lei
- 18% Preț: 894.40 lei
- 18% Preț: 893.64 lei
- 15% Preț: 606.28 lei
- 18% Preț: 1163.23 lei
- 15% Preț: 605.86 lei
- 18% Preț: 1152.84 lei
- 15% Preț: 603.21 lei
- 18% Preț: 947.93 lei
- 15% Preț: 602.43 lei
- 15% Preț: 607.07 lei
- Preț: 366.65 lei
- 18% Preț: 946.59 lei
- Preț: 365.05 lei
- Preț: 365.05 lei
- 18% Preț: 1050.46 lei
- 18% Preț: 1051.95 lei
- Preț: 366.45 lei
- 15% Preț: 603.53 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 605.06 lei
Preț vechi: 711.84 lei
-15% Nou
Puncte Express: 908
Preț estimativ în valută:
115.83€ • 126.18$ • 97.17£
115.83€ • 126.18$ • 97.17£
Carte tipărită la comandă
Livrare economică 19 decembrie 24 - 02 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319412931
ISBN-10: 3319412930
Pagini: 115
Ilustrații: XXII, 114 p. 20 illus., 8 illus. in color.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.37 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3319412930
Pagini: 115
Ilustrații: XXII, 114 p. 20 illus., 8 illus. in color.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.37 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Magnetoquasistatic Approximation of Maxwell's Equations, Uncertainty
Quantification Principles.- Magnetoquasistatic Model and its Numerical Approximation.- Parametric Model, Continuity and First Order Sensitivity Analysis.- Uncertainty Quantification.- Uncertainty Quantification for Magnets.- Conclusion and Outlook.
Quantification Principles.- Magnetoquasistatic Model and its Numerical Approximation.- Parametric Model, Continuity and First Order Sensitivity Analysis.- Uncertainty Quantification.- Uncertainty Quantification for Magnets.- Conclusion and Outlook.
Textul de pe ultima copertă
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.
Caracteristici
Nominated as an outstanding PhD thesis by Technische Universität Darmstadt, Germany Proposes a mathematical approach for quantifying uncertainties in magnetic fields Includes relevant numerical examples for accelerator magnet design Includes supplementary material: sn.pub/extras