Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint: Springer Theses
Autor Haoyun Tuen Limba Engleză Paperback – sep 2018
In this thesis, the author investigates experimentally and numerically
the fracture behavior of an electron beam welded joint made from
two butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-
Needleman (GTN) model and the cohesive zone model (CZM) were
adopted to predict the crack propagation of thick compact tension (CT)
specimens. Advantages and disadvantages of the three mentioned models
are discussed. The cohesive zone model is suggested as it is easy to use
for scientists & engineers because the CZM has less model parameters
and can be used to simulate arbitrary crack propagation. The results
shown in this thesis help to evaluate the fracture behavior of a metallic
material. A 3D optical deformation measurement system (ARAMIS) and
the synchrotron radiation-computed laminography (SRCL) techniquereveal for the first time the damage evolution on the surfaceof the sample
and inside a thin sheet specimen obtained from steel S355. Damage
evolution by void initiation, growth and coalescence are visualized in
2D and 3D laminographic images. Two fracture types, i.e., a flat crack
propagation originated from void initiation, growth and coalescence
and a shear coalescence mechanism are visualized in 2D and 3D images
of laminographic data, showing the complexity of real fracture. In
the dissertation, the 3D Rousselier model is applied for the first time
successfully to predict different microcrack shapes before shear cracks
arise by defining the finite elements in front of the initial notch with
inhomogeneous f0-values. The influence of the distribution of inclusions
on the fracture shape is also discussed. For the analyzed material, a
homogeneous distribution of particles in the material provides the
highest resistance to fracture.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 550.31 lei 38-44 zile | |
Springer International Publishing – sep 2018 | 550.31 lei 38-44 zile | |
Hardback (1) | 623.18 lei 6-8 săpt. | |
Springer International Publishing – 23 oct 2017 | 623.18 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1120.94 lei
- Preț: 378.78 lei
- 15% Preț: 628.41 lei
- 18% Preț: 1185.38 lei
- Preț: 387.92 lei
- 18% Preț: 969.23 lei
- 18% Preț: 914.05 lei
- Preț: 544.51 lei
- 15% Preț: 624.74 lei
- 15% Preț: 624.28 lei
- 15% Preț: 620.96 lei
- 20% Preț: 558.80 lei
- 18% Preț: 916.35 lei
- 18% Preț: 1084.20 lei
- 15% Preț: 621.74 lei
- 15% Preț: 621.74 lei
- Preț: 276.68 lei
- 15% Preț: 618.22 lei
- 18% Preț: 865.60 lei
- 15% Preț: 622.52 lei
- Preț: 378.62 lei
- 20% Preț: 563.88 lei
- Preț: 382.16 lei
- 15% Preț: 619.66 lei
- 15% Preț: 623.48 lei
- 18% Preț: 1080.35 lei
- 20% Preț: 551.34 lei
- 18% Preț: 1071.93 lei
- 18% Preț: 1078.05 lei
- 18% Preț: 1190.72 lei
- 18% Preț: 917.87 lei
- 18% Preț: 917.09 lei
- 15% Preț: 621.74 lei
- 18% Preț: 1193.80 lei
- 15% Preț: 621.74 lei
- 18% Preț: 1182.30 lei
- 15% Preț: 618.57 lei
- 18% Preț: 972.14 lei
- 15% Preț: 617.77 lei
- 15% Preț: 622.52 lei
- Preț: 376.18 lei
- 18% Preț: 970.76 lei
- Preț: 374.28 lei
- Preț: 374.28 lei
- 18% Preț: 1078.05 lei
- 18% Preț: 1078.83 lei
- Preț: 375.97 lei
- 15% Preț: 618.89 lei
- 20% Preț: 554.19 lei
- 20% Preț: 555.56 lei
Preț: 550.31 lei
Preț vechi: 687.89 lei
-20% Nou
Puncte Express: 825
Preț estimativ în valută:
105.31€ • 110.76$ • 87.99£
105.31€ • 110.76$ • 87.99£
Carte tipărită la comandă
Livrare economică 04-10 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319884059
ISBN-10: 3319884050
Pagini: 171
Ilustrații: XVII, 171 p. 190 illus., 163 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:Softcover reprint of the original 1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3319884050
Pagini: 171
Ilustrații: XVII, 171 p. 190 illus., 163 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:Softcover reprint of the original 1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Scientific background.- Characterization of steel S355 electron beam welded (EBW) joints.- The Rousselier model.- The Gurson-Tvergaard-Needleman (GTN) model.- The Cohesive zone model.- Optical measurement of crack propagation with the ARAMIS system.- In situ laminography investigation of damage evolution in S355 base material.- Summary and Outlook.
Notă biografică
Haoyun Tu is an Assistant Professor at the School of Aerospace Engineering and Applied Mechanics, Tongji University, PR China. He received his BE and ME from Northwestern Polytechnical University, China and Dr.-Ing. from University of Stuttgart, Germany. His research interests are on fracture mechanism of metals and welded joints from metals with experimental and finite element methods as well as on characterization techniques such as 3D optical deformation measurement and Synchrotron radiation-computed laminography (SRCL).
Textul de pe ultima copertă
In this thesis, the author investigates experimentally and numerically
the fracture behavior of an electron beam welded joint made from
two butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-
Needleman (GTN) model and the cohesive zone model (CZM) were
adopted to predict the crack propagation of thick compact tension (CT)
specimens. Advantages and disadvantages of the three mentioned models
are discussed. The cohesive zone model is suggested as it is easy to use
for scientists & engineers because the CZM has less model parameters
and can be used to simulate arbitrary crack propagation. The results
shown in this thesis help to evaluate the fracture behavior of a metallic
material. A 3D optical deformation measurement system (ARAMIS) and
the synchrotron radiation-computed laminography (SRCL) techniquereveal for the first time the damage evolution on the surfaceof the sample
and inside a thin sheet specimen obtained from steel S355. Damage
evolution by void initiation, growth and coalescence are visualized in
2D and 3D laminographic images. Two fracture types, i.e., a flat crack
propagation originated from void initiation, growth and coalescence
and a shear coalescence mechanism are visualized in 2D and 3D images
of laminographic data, showing the complexity of real fracture. In
the dissertation, the 3D Rousselier model is applied for the first time
successfully to predict different microcrack shapes before shear cracks
arise by defining the finite elements in front of the initial notch with
inhomogeneous f0-values. The influence of the distribution of inclusions
on the fracture shape is also discussed. For the analyzed material, a
homogeneous distribution of particles in the material provides the
highest resistance to fracture.
Caracteristici
Suggests cohesive zone model as the ideal for the prediction of crack propagation Concludes essential infomation for the evaluation of the fracture behaviour of metallic materials Reveals the nature of the fracture mechanism of an electron beam welded joint Includes supplementary material: sn.pub/extras