Cantitate/Preț
Produs

Oeuvres - Collected Papers I: 1948 - 1958: Springer Collected Works in Mathematics

Autor A. Borel
en Limba Engleză Paperback – 4 dec 2014
Armand Borel’s mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel’s work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan, and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups, and for his indefatigable action in favor of high quality in mathematical research and of the propagation of new ideas."
He wrote more than 145 articles before 1982, which were collected in three volumes published in 1983. A fourth volume of subsequent articles was published in 2001. Volume I collects the papers written from 1948 to 1958.
Citește tot Restrânge

Din seria Springer Collected Works in Mathematics

Preț: 51256 lei

Nou

Puncte Express: 769

Preț estimativ în valută:
9809 10179$ 8199£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662443071
ISBN-10: 3662443074
Pagini: 726
Ilustrații: X, 718 p.
Dimensiuni: 155 x 235 x 37 mm
Greutate: 1 kg
Ediția:1983. Reprint 2014 of the 1983 edition
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Collected Works in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

(avec J. de Siebenthal) Sur les sous-groupes fermes connexes de rang maximum des groupes de Lie clos.- Some remarks about Lie groups transitive on spheres and tori.- (avec J. de Siebenthal) Les sous-groupes fermes de rang maximum des groupes de Lie clos.- Limites projectives de groupes de Lie.- Sections locales de certains espaces fibres.- Le plan projectif des octaves et les spheres comme espaces homogenes.- Groupes localement compacts.- (avec J-P. Serre) Impossibilite de fibrer un espace euclidien par des fibres compactes.- Remarques sur l'homologie filtree.- Impossibilite de fibrer une sphere par un produit de spheres.- Sous-groupes compacts maximaux des groupes de Lie.- Sur la cohomologie des varietes de Stiefel et de certains groupes de Lie.- La transgression dans les espaces fibres principaux.- Sur la cohomologie des espaces homogenes de groupes de Lie compacts.- (avec J-P. Serre) Determination des p-puissances reduites de Steenrod dans la cohomologie des groupes classiques. Applications.