Cantitate/Preț
Produs

Oeuvres - Collected Papers III: 1972 - 1984: Springer Collected Works in Mathematics

Autor Jean Pierre Serre
en Limba Engleză Paperback – 14 apr 2014
The impact and influence of Jean-Pierre Serre's work have been notable ever since his doctoral thesis on homotopy groups. The abundance of significant results and deep insight contained in his research and survey papers ranging through topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching.Characteristic of Serre's publications are the many open questions he formulated suggesting further research directions. Four volumes specify how he has provided comments on and corrections to most articles, and described the present status of the open questions with reference to later results.Jean-Pierre Serre is one of a few mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 50456 lei  6-8 săpt.
  Springer – 10 dec 2002 51392 lei  3-5 săpt.
  Springer Berlin, Heidelberg – 14 apr 2014 50456 lei  6-8 săpt.

Din seria Springer Collected Works in Mathematics

Preț: 50456 lei

Nou

Puncte Express: 757

Preț estimativ în valută:
9659 10040$ 8009£

Carte tipărită la comandă

Livrare economică 07-21 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642398377
ISBN-10: 3642398375
Pagini: 740
Ilustrații: VI, 733 p. 1 illus.
Dimensiuni: 155 x 235 x 40 mm
Greutate: 1.02 kg
Ediția:2003. Reprint 2013 of the 2003 edition
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Collected Works in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Extensions de corps ordonnes.- (avec A Borel) Impossibilite de fibrer un espace euclidien par des fibres compactes.- Cohomologie des extensions de groupes.- Homologie singuliere des espaces fibres. I. La suite spectrale.- Homologie singuliere des espaces fibres. II. Les espaces de lacets.

Caracteristici

Includes supplementary material: sn.pub/extras