Cantitate/Preț
Produs

On the Problem of Plateau / Subharmonic Functions: Ergebnisse der Mathematik und Ihrer Grenzgebiete. 1. Folge, cartea 2

Autor T. Rado
en Limba Engleză Paperback – 4 ian 1971
A convex function f may be called sublinear in the following sense; if a linear function l is ::=: j at the boundary points of an interval, then l:> j in the interior of that interval also. If we replace the terms interval and linear junction by the terms domain and harmonic function, we obtain a statement which expresses the characteristic property of subharmonic functions of two or more variables. This ge­ neralization, formulated and developed by F. RIEsz, immediately at­ tracted the attention of many mathematicians, both on account of its intrinsic interest and on account of the wide range of its applications. If f (z) is an analytic function of the complex variable z = x + i y. then If (z) I is subharmonic. The potential of a negative mass-distribu­ tion is subharmonic. In differential geometry, surfaces of negative curvature and minimal surfaces can be characterized in terms of sub­ harmonic functions. The idea of a subharmonic function leads to significant applications and interpretations in the fields just referred to, and· conversely, every one of these fields is an apparently in­ exhaustible source of new theorems on subharmonic functions, either by analogy or by direct implication.
Citește tot Restrânge

Din seria Ergebnisse der Mathematik und Ihrer Grenzgebiete. 1. Folge

Preț: 38143 lei

Nou

Puncte Express: 572

Preț estimativ în valută:
7302 7619$ 6121£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540054795
ISBN-10: 3540054790
Pagini: 188
Ilustrații: XI, 109 p.
Greutate: 0.26 kg
Ediția:Reprint of the 1st editions Berlin 1933 and 1937
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und Ihrer Grenzgebiete. 1. Folge

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. Curves and surfaces.- II. Minimal surfaces in the small.- III Minimal surfaces in the large.- IV. The non-parametric problem.- V. The problem of Plateau in the parametric form.- VI. The simultaneous problem in the parametric form. Generalizations.- I. Definition and preliminary discussion.- II. Integral means.- III. Criterions and constructions.- IV. Examples.- V. Harmonic majorants.- VI. Representation in terms of potentials.- VII. Analogies between harmonic and subharmonic functions.- References.