Cantitate/Preț
Produs

Ontology Learning for the Semantic Web: The Springer International Series in Engineering and Computer Science, cartea 665

Autor Alexander Maedche
en Limba Engleză Hardback – 28 feb 2002
Ontology Learning for the Semantic Web explores techniques for applying knowledge discovery techniques to different web data sources (such as HTML documents, dictionaries, etc.), in order to support the task of engineering and maintaining ontologies. The approach of ontology learning proposed in Ontology Learning for the Semantic Web includes a number of complementary disciplines that feed in different types of unstructured and semi-structured data. This data is necessary in order to support a semi-automatic ontology engineering process.
Ontology Learning for the Semantic Web is designed for researchers and developers of semantic web applications. It also serves as an excellent supplemental reference to advanced level courses in ontologies and the semantic web.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64433 lei  6-8 săpt.
  Springer Us – 31 oct 2012 64433 lei  6-8 săpt.
Hardback (1) 65109 lei  6-8 săpt.
  Springer Us – 28 feb 2002 65109 lei  6-8 săpt.

Din seria The Springer International Series in Engineering and Computer Science

Preț: 65109 lei

Preț vechi: 81387 lei
-20% Nou

Puncte Express: 977

Preț estimativ în valută:
12460 12992$ 10355£

Carte tipărită la comandă

Livrare economică 21 martie-04 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792376569
ISBN-10: 0792376560
Pagini: 244
Ilustrații: XXIII, 244 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.57 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

I Fundamentals.- 1. Introduction.- 2. Ontology — Definition & Overview.- 3. Layered Ontology Engineering.- II Ontology Learning for the Semantic Web.- 4. Ontology Learning Framework.- 5. Data Import & Processing.- 6. Ontology Learning Algorithms.- III Implementation & Evaluation.- 7. The TEXT-TO-ONTO Environment.- 8. Evaluation.- IV Related Work & Outlook.- 9. Related Work.- 10. Conclusion & Outlook.- References.