Cantitate/Preț
Produs

Optimale lineare Regelung: Grenzen der erreichbaren Regelgüte in linearen zeitinvarianten Regelkreisen: Fachberichte Messen - Steuern - Regeln, cartea 18

Autor Sebastian Engell
de Limba Germană Paperback – 25 aug 1988
Gegenstand des Buches ist die Bestimmung der bestmöglichen erreichbaren Regelgüte in linearen zeitinvarianten Regelkreisen. Hierbei werden keine Einschränkungen bezüglich der Struktur der Regelstrecke oder der Regler gemacht. Ausgangspunkt der Untersuchungen ist eine praxisnahe Spezifikation des gewünschten Regelkreisverhaltens, die Stabilität, gutes Folgeverhalten und Robustheit sicherstellt, in Form von Schranken für bestimmte Frequenzgänge des geschlossenen Regelkreises. Es wird dann schrittweise die mathematische Theorie entwickelt, mit der sich die Einhaltbarkeit solcher Spezifikationen für ein gegebenes Streckenmodell überprüfen und die optimale Regelgüte ermitteln läßt. Dies geschieht zunächst ausführlich für zeitkontinuierliche Eingrößenregelkreise. Mit Hilfe einer neu entwickelten Methode zur numerischen Auswertung der resultierenden Bedingungen wurden erstmals für die wichtigsten Streckentypen Diagramme berechnet, die exakt die notwendigen Kompromisse bei der Regelkreisspezifikation angeben. Unter Benutzung der w-Transformation werden die Ergebnisse auf zeitdiskrete Regelungen übertragen. Eine knappe Darstellung der Verallgemeinerung der Methodik auf Mehrgrößenregelungen bildet den Abschluß des Buches. Da die erforderliche Robustheit des Regelkreises Bestandteil der Spezifikation ist, liefert die dargestellte Theorie auch eine Aussage darüber, ob für ein konkretes Problem festeingestellte lineare Regler ausreichend sind, oder ob zu komplexeren Regelungen (nicht-linear, schaltend, adaptiv) übergegangen werden muß, um die geforderte Regelgüte zu erreichen.
Citește tot Restrânge

Din seria Fachberichte Messen - Steuern - Regeln

Preț: 45878 lei

Nou

Puncte Express: 688

Preț estimativ în valută:
8781 9132$ 7348£

Carte tipărită la comandă

Livrare economică 14-28 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540191209
ISBN-10: 3540191208
Pagini: 324
Ilustrații: XIII, 307 S.
Dimensiuni: 170 x 244 x 17 mm
Greutate: 0.52 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Fachberichte Messen - Steuern - Regeln

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Professional/practitioner

Cuprins

1 Einleitung.- 2 Grundlagen für die Behandlung linearer zeitin-varianter Regelkreise im Frequenzbereich.- 2.1 Ein-/Ausgangsverhalten linearer Eingrößensysteme.- 2.2 Etwas Funktionentheorie.- 2.3 Stabilität linearer Eingrößensysteme.- 2.4 Stabilitätsbedingungen für lineare Eingrößenregelkreise.- 3 Zur Spezifikation zeitkontinuierlicher Eingrößen-regelkreise.- 3.1 Allgemeine Überlegungen.- 3.2 Stabilität.- 3.3 Folgeverhalten.- 3.4 Robustheit.- 3.5 Zusammenfassung.- 4 Grundlegende Beschränkungen des erreichbaren Störfrequenzgangs.- 4.1 Problemstellung.- 4.2 Faktorisierung von Übertragungsfunktionen.- 4.3 Die Ungleichung von Zames und Francis.- 4.4 Quantitative Auswertung der Ungleichung von Zames und Francis.- 4.5 Zum |H?-Optimierungsproblem für S(s).- 4.6 Berücksichtigung von Nullstellen im Unendlichen.- 4.7 Allgemeine Form des Theorems von Bode.- 4.8 Zusammenfassung.- 5 Weitere qrundlegende Beschränkungen der erreichbaren Reqelgüte.- 5.1 Beschränkungen für |T(j?)|.- 5.2 Erste Uberlegungen zur Spezifikation von |S(j?)| und |T(j?)| in komplementären Frequenzbereichen.- 5.3 Beschränkungen für |R(j?)|.- 5.4 Auswirkungen einer Totzeit auf die erreichbare Regelgüte.- 5.5 Zusammenfassung.- 6 Genauere Bestimmung der erreichbaren Regelqüte für zeitkontinuierliche Eingrößensysteme mit Hilfe der Interpolationstheorie.- 6.1 Motivation.- 6.2 Das Picksche Interpolationsproblem und seine Lösung.- 6.3 Grenzen für |S(j?)|.- 6.4 Grenzen für |T(j?)| und |R(j?)|.- 6.5 Grenzen für die Spezifikation von |S(j?)| und |T(j?)| in komplementären Frequenzbereichen - allgemeines Ergebnis -.- 6.6 Zusammenfassung.- 7 Anwendunq von Tiefpaßfiltern mit Tschebycheff-Charak-teristik zur Bestimmung der erreichbaren Regelgüte.- 7.1 Approximation von c(?) mitHilfe von Cauerpara-meter-Filterfunktionen.- 7.2 Bestimmung der erreichbaren Regelgüte für die wichtigsten Streckentypen.- 7.3 Überlegungen zur mit Kompensationsgliedérn endlicher Ordnung erreichbaren Regelgüte.- 7.4 Eine spezielle Lösung niedriger Ordnung.- 7.5 Zusammenfassung.- 8 Grenzen der erreichbaren Regelgüte in zeitdiskreten und Abtastregelkreisen.- 8.1 Zur Spezifikation zeitdiskreter Eingrößenregel-kreise.- 8.2 Übertragung der bisherigen Ergebnisse zu den Grenzen der Regelgüte auf zeitdiskrete Regel- kreise.- 8.3 Exakte Berücksichtigung von beliebigen Verzöge-rungen.- 8.4 Anwendung eines Ergebnisses von Nehari auf die überprüfung der Einhaltbarkeit komplementärer Spezifikationen.- 8.5 Abtastregelkreise.- 8.6 Zusammenfassung.- 9 Zur übertragung der Ergebnisse auf Mehrgrößensysteme.- 9.1 Struktur und Spezifikation von Mehrgrößen-regelkreisen.- 9.2 Bestimmung von Grenzen der erreichbaren Regelgüte.- 9.3 Zur Synthese von Mehrgrößenregelungen.- 10 Abschließende Bemerkungen.- Anhang A: Beweise.- Anhang B: Die wichtigsten Aussagen dieser Arbeit und ihre Bedeutung für die regelungstechnische Praxis.- Stichwortverzeichnis.