Cantitate/Preț
Produs

Ordered Intermetallics: Physical Metallurgy and Mechanical Behaviour: NATO Science Series E:, cartea 213

Editat de C. T. Liu, R. W. Cahn, G. Sauthoff
en Limba Engleză Paperback – 13 noi 2012
Ordered intermetallics constitute a unique class of metallic materials which may be developed as new-generation materials for structural use at high temperatures in hostile environments. At present, there is a worldwide interest in intermetallics, and extensive efforts have been devoted to intermetallic research and development in the U.S., Japan, European countries, and other nations. As a result, significant advances have been made in all areas of intermetallic research. This NATO Advanced Workshop on ordered intermetallics (1) reviews the recent progress, and (2) assesses the future direction of intermetallic research in the areas of electronic structure and phase stability, deformation and fracture, and high-temperature properties. The book is divided into six parts: (1) Electronic Structure and Phase Stability; (2) Deformation and Dislocation Structures; (3) Ductility and Fracture; (4) Kinetic Processes and Creep Behavior; (5) Research Programs and Highlights; and (6) Assessment of Current Research and Recommendation for Future Work.
The first four parts review the recent advances in the three focus areas. The fifth part provides highlights of the intermetallic research under major programs and in different institutes and countries. The last part provides a forum for the discussion of research areas for future studies.
Citește tot Restrânge

Din seria NATO Science Series E:

Preț: 41219 lei

Nou

Puncte Express: 618

Preț estimativ în valută:
7889 8130$ 6660£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789401051194
ISBN-10: 9401051194
Pagini: 716
Ilustrații: IX, 701 p.
Dimensiuni: 160 x 240 x 38 mm
Greutate: 0.98 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria NATO Science Series E:

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

Section 1. Electronic Structure and Phase Stability.- Phase Stability, and Cohesive, Electronic and Mechanical Properties of Intermetallic Compounds.- First Principles Theory of Alloy Phase Stability: Ordering and Pre-Martensitic Phenomena in ?-phase NiAl.- Why First-Principles Calculations for Alloy Phase Equilibria?.- Structure Maps for Ordered Intermetallics.- Cluster Expansion of fcc Pd-V Intermetallics.- Solubility and Phase Stability in Ordered Intermetallics.- Computer Calculation of Intermetallic Phase Diagrams.- Atomic Ordering in Ternary and Quaternary Compound Semiconductors.- Critical Phenomena at Surfaces and Interfaces.- Grown-In and Shear-Produced APB Faults in Ordered Intermetallics.- Section 2. Deformation and Dislocation Structures.- Deformation and Fracture of Intermetallic Compounds Having the L12 Crystal Structure.- Fundamentals of Mechanical Behavior in Intermetallic Compounds — A Synthesis of Atomistic and Continuum Modeling.- Properties of Surface Defects in Intermetallics.- Observations of Dislocation Mechanisms Governing Yield Strength in L12 Alloys.- Locking and Unlocking of Screws and Superkinks, and the Yield Stress Anomaly in L12 Alloys.- Deformation Behavior of TiAl Compounds with the TiAl/Ti3Al Lamellar Microstructure.- Solute-Dislocation Interactions and Solid-Solution Strengthening Mechanisms in Ordered Alloys.- Cyclic Deformation of Intermetallic Alloys.- Temperature and Composition Dependent Deformation in ?-Titanium Aluminides.- Section 3. Ductility and Fracture.- Fracture Mechanisms in Intermetallics.- Moisture-Induced Environmental Emhrittlement of Ordered Intermetallic Alloys at Ambient Temperatures.- Atomic Structure and Chemical Composition of Grain Boundaries in L12 Intermetallic Compounds: Relation to IntergranularBrittleness.- The Local Compositional Order and Dislocation Structure of Grain Boundaries in Ni3Al.- The Brittle to Ductile Transition and the Transmission of Slip Across Grain Boundaries in L12 Intermetallic Compounds.- Alloying Effects and Grain-Boundary Fracture in L12 Ordered Intermetallics.- Fracture and Ductilization of ?-Titanium Aluminides.- Section 4. Kinetic Processes and Creep Behavior.- Some Aspects of Diffusion in Intermetallic Compounds.- Diffusion Mechanisms in the B2 Type Intermetallic Compounds.- Interdiffusion in Multicomponent Systems.- Diffusion in Exotic Intermetallics.- Use of Atomistic Techniques to Study Diffusion in Intermetallics.- Kinetics of Ordering and Disordering of Alloys.- Creep Behaviour and Creep Mechanisms in Ordered Intermetallics.- Creep Deformation of B2 Aluminides.- Creep in L12-Intermetallics.- Section 5. Research Programs and Highlights.- Basic Research on Intermetallic Compounds.- Utilization of Computational Materials Design to Improve High Temperature Intermetallics.- Intermetallics Research and Development in Taiwan, R.O.C.- Intermetallic Research in the UK.- The Ordered Intermetallic Research in P.R. China.- Potential and Prospects of Some Intermetallic Compounds for Structural Applications.- Research and Development of Titanium Aluminides in Germany.- Overview of NiAl Alloys for High Temperature Structural Applications.- Section 6. A Brief Summary of the NATO Advanced Research.- Workshop on Ordered Intermetallics.