Cantitate/Preț
Produs

Pattern Recognition Applications and Methods: 9th International Conference, ICPRAM 2020, Valletta, Malta, February 22–24, 2020, Revised Selected Papers: Lecture Notes in Computer Science, cartea 12594

Editat de Maria De Marsico, Gabriella Sanniti di Baja, Ana Fred
en Limba Engleză Paperback – 23 dec 2020
This book contains revised and extended versions of selected papers from the 9th International Conference on Pattern Recognition, ICPRAM 2020, held in Valletta, Malta, in February 2020. The 7 full papers presented were carefully reviewed and selected from 102 initial submissions.
The papers describe applications of pattern recognition techniques to real-world problems, interdisciplinary research, experimental and theoretical studies yielding new insights that advance pattern recognition methods are especially encouraged.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (6) 31876 lei  6-8 săpt.
  Springer International Publishing – 23 dec 2020 31876 lei  6-8 săpt.
  Springer International Publishing – 25 ian 2020 31989 lei  6-8 săpt.
  Springer International Publishing – 5 ian 2019 32199 lei  6-8 săpt.
  Springer International Publishing – 16 iun 2018 32359 lei  6-8 săpt.
  Springer International Publishing – 3 feb 2017 32393 lei  6-8 săpt.
  Springer International Publishing – 27 ian 2023 34859 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 31876 lei

Preț vechi: 39844 lei
-20% Nou

Puncte Express: 478

Preț estimativ în valută:
6101 6342$ 5054£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030661243
ISBN-10: 3030661245
Pagini: 139
Ilustrații: XI, 139 p. 46 illus., 41 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.22 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics

Locul publicării:Cham, Switzerland

Cuprins

End to End Deep Neural Network Classifier Design for Universal Sign Recognition.- MaskADNet: MOTS based on ADNet.- Dimensionality Reduction and Attention Mechanisms for Extracting.- Efficient Radial Distortion Correction for Planar Motion.- Comparison of algorithms for Tree-top detection in Drone image mosaics of Japanese Mixed Forests.- Investigating Similarity Metrics for Convolutional Neural Networks in the Case of Unstructured Pruning.- Encoding of Indefinite Proximity Data: A Structure Preserving Perspective.

Caracteristici

Includes supplementary material: sn.pub/extras