Cantitate/Preț
Produs

Physics of Quantum Rings: NanoScience and Technology

Editat de Vladimir M. Fomin
en Limba Engleză Paperback – 25 aug 2015
This book presents the new class of materials of quantum rings. It provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 70137 lei  39-44 zile
  Springer – 25 aug 2015 70137 lei  39-44 zile
  Springer International Publishing – 19 ian 2019 109996 lei  6-8 săpt.
Hardback (2) 64234 lei  3-5 săpt.
  Springer Berlin, Heidelberg – 10 sep 2013 64234 lei  3-5 săpt.
  Springer International Publishing – 12 sep 2018 110613 lei  6-8 săpt.

Din seria NanoScience and Technology

Preț: 70137 lei

Preț vechi: 92286 lei
-24% Nou

Puncte Express: 1052

Preț estimativ în valută:
13421 14120$ 11141£

Carte tipărită la comandă

Livrare economică 13-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642438431
ISBN-10: 3642438431
Pagini: 487
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.72 kg
Ediția:Softcover reprint of the original 1st ed. 2014
Editura: Springer
Colecția Springer
Seria NanoScience and Technology

Locul publicării:Berlin, Heidelberg, Germany

Cuprins

Preface.- Quantum Ring: A Unique Playground for the Quantum-Mechanical Paradigm.- Fabrication, Characterization and Physical Properties.- Growth and Spectroscopy of Semiconductor Quantum Rings.- Quantum Rings: Fabrication and Optical Properties.- Self-organized Quantum Rings: Physical Characterization and Theoretical Modeling.- Scanning-probe Electronic Imaging of Lithographically Patterned Quantum Rings.- Self-organized Formation and XSTM-Characterization of GaSb/GaAs Quantum Rings.- Self-assembled Semiconductor Quantum Rings Complexes by Droplet Epitaxy: Growth and Physical Properties.- Aharonov-Bohm Effect for Excitons.- New Versions of the Aharonov-Bohm Effect in Quantum Rings.- Aharonov-Bohm Effect for Neutral Exctions in Quantum Rings.- Optical Aharonov-Bohm Effect in Type-II Quantum Dots.- Theory.- Strained Quantum Rings.- Theoretical Modeling of Electronic and Optical Properties of Semiconductor Quantum Rings.- Coulomb Interaction in Finite-Width Quantum Rings. Differential Geometry Applied to Rings and Möbius Nanostructures.- Hole Mixing in Semiconductor Quantum Rings.- Engineering of Electron States and Spin Relaxation in Quantum Rings and Quantum Dot-Ring Nanostructures.

Recenzii

“Offers extensive material for scientists and upper-level students who wish to familiarize themselves with the subject in great breadth and depth, showing that, beyond points, lines and surfaces, there is still "a lot of room at the bottom".” (Translated from German, Prof. Dr. Axel Lorke, pro-physik.de, September 2019)

Notă biografică

Professor Vladimir M. Fomin develops theory of strain-induced nano-architectures, in particular, physical properties of self-assembled nano-  and microstructures (quantum rings, rolled-up semiconductor and superconductor membranes, superlattices of quantum dots) at the Institute for Integrative Nanosciences (IIN), Leibniz Institute for Solid State and Materials Research (IFW), Dresden, Germany (since 2009). He made his doctoral studies in Kishinev at the Department of Theoretical Physics of the State University of Moldova and received the Ph.D.degree in theoretical physics in 1978. Since then he worked in the Laboratory “Physics of Multi-Layer Structures” at the State University of Moldova. His research interests embraced non-linear optical properties and transport due to the charge-vibration interaction in semiconductors and in multi-layer structures, including derivation of the phonon spectra and the electron-phonon interaction; classification of polaritons and phonons; platonic, bipolaronic and excitonic effects in arbitrary multi-layer structures. He won a State Prize of Moldova in 1987. He received the degree of Dr. habilitat in physical and mathematical sciences from the Academy of Sciences of Moldova in 1991. He is a University Professor in Theoretical Physics (State University of Moldova, since 1995). As a Research Fellow of the Alexander von Humboldt Foundation he worked at the Martin-Luther-University of Halle-Wittenberg (1993–1994). He was associated with the Laboratory Theoretical Solid State Physics (TFVS) (University of Antwerp, 1995–2008) and with the Group Photonics and Semiconductor Nanophysics and COBRA Inter-University Research Institute (Eindhoven University of Technology, 1998–1999, 2003–2007), Division Quantum and Physical Chemistry (Catholic University of Leuven, 2008) and Faculty of Physics and Center for Nanointegration (CeNIDE) (University of Duisburg-Essen, Duisburg, 2009-2009). He received a Diploma of a Scientific Discovery of the Phenomenon of the Propagation of Spatially-Extended Interface Phonon Polaritons in Composite Superlattices from the Academy of Natural Sciences of Russia (1999). He was bestowed a medal “Academician P. L. Kapitsa” by the Academy of Natural Sciences of Russia (2000). In 2007 he was elected a Honorary Member of the Academy of Sciences of Moldova. In 2011, he edited a special issue on Modern Advancements in Experimental and Theoretical Physics of Quantum Rings of the Journal of Nanoelectronics and Optoelectronics.  His present scientific directions cover diversified fields in physics of nanostructures: optical properties of quantum dots, persistent currents and magnetization of quantum rings; phase boundaries and vortex matter in meso-, nanoscopic and patterned superconductors; superconducting properties of metallic nanograins; surface-induced magnetic anisotropy in mesoscopic systems of dilute magnetic alloys; quantum transport in sub-0.1 micron semiconductor devices; vibrational excitations and polaronic effects in nanostructures; thermoelectric properties of semiconductor nanostructures. 2 monographs, 3 textbooks, 7 reviews, 10 patents, 169 scientific articles and 277 conference presentations (including 39 invited).      

Textul de pe ultima copertă

This book, now in its second edition, introduces readers to quantum rings as a special class of modern high-tech material structures at the nanoscale. It deals, in particular, with their formation by means of molecular beam epitaxy and droplet epitaxy of semiconductors, and their topology-driven electronic, optical and magnetic properties. A highly complex theoretical model is developed to adequately represent the specific features of quantum rings. The results presented here are intended to facilitate the development of low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.
This second edition includes both new and significantly revised chapters. It provides extensive information on recent advances in the physics of quantum rings related to the spin-orbit interaction and spin dynamics (spin interference in Rashba rings, tunable exciton topology on type II InAs/GaAsSb quantum nanostructures), the electron-phononinteraction in ring-like structures, quantum interference manifestations in novel materials (graphene nanoribbons, MoS2), and the effects of electrical field and THz radiation on the optical properties of quantum rings. The new edition also shares insights into the properties of various novel architectures, including coupled quantum ring-quantum dot chains and concentric quantum rings, topologic states of light in self-assembled ring-like cavities, and optical and plasmon m.odes in Möbius-shaped resonators.

Caracteristici

Presents the new class of materials of quantum rings Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing Explains the physical properties of quantum rings to cover a gap in scientific literature Presents the application of most advanced nanoengineering and nanocharacterization techniques Includes supplementary material: sn.pub/extras