Cantitate/Preț
Produs

Potential Theory and Right Processes: Mathematics and Its Applications, cartea 572

Autor Lucian Beznea, Nicu Boboc
en Limba Engleză Hardback – 28 iul 2004

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38640 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 7 dec 2010 38640 lei  6-8 săpt.
Hardback (1) 39378 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 28 iul 2004 39378 lei  6-8 săpt.

Din seria Mathematics and Its Applications

Preț: 39378 lei

Nou

Puncte Express: 591

Preț estimativ în valută:
7540 7851$ 6256£

Carte tipărită la comandă

Livrare economică 14-28 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402024962
ISBN-10: 1402024967
Pagini: 370
Ilustrații: VI, 370 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.71 kg
Ediția:2004
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1 Excessive Functions.- 1.1 Sub-Markovian resolvent of kernels.- 1.2 Basics on excessive functions.- 1.3 Fine topology.- 1.4 Excessive measures.- 1.5 Ray topology and compactification.- 1.6 The reduction operation and the associated capacities.- 1.7 Polar and semipolar sets. Nearly measurable functions.- 1.8 Probabilistic interpretations: Sub-Markovian resolvents and right processes.- 2 Cones of Potentials and H-Cones.- 2.1 Basics on cones of potentials and H-cones.- 2.2 ?-Balayages on cones of potentials.- 2.3 Balayages on H-cones.- 2.4 Quasi bounded, subtractive and regular elements of a cone of potentials.- 3 Fine Potential Theoretical Techniques.- 3.1 Cones of potentials associated with a sub-Markovian resolvent.- 3.2 Regular excessive functions, fine carrier and semipolarity.- 3.3 Representation of balayages on excessive measures.- 3.4 Quasi bounded, regular and subtractive excessive measures.- 3.5 Tightness for sub-Markovian resolvents.- 3.6 Localization in excessive functions and excessive measures.- 3.7 Probabilistic interpretations: Continuous additive functionals and standardness.- 4 Strongly Supermedian Functions and Kernels.- 4.1 Supermedian functionals.- 4.2 Supermedian ?-quasi kernels.- 4.3 Strongly supermedian functions.- 4.4 Fine densities.- 4.5 Probabilistic interpretations: Homogeneous random measures.- 5 Subordinate Resolvents.- 5.1 Weak subordination operators.- 5.2 Inverse subordination.- 5.3 Probabilistic interpretations: Multiplicative functionals.- 6 Revuz Correspondence.- 6.1 Revuz measures.- 6.2 Hypothesis (B) of Hunt.- 6.3 Smooth measures and sub-Markovian resolvents.- 6.4 Measure perturbation of sub-Markovian resolvents.- 6.5 Probabilistic interpretations: Positive left additive functionals.- 7 Resolvents under Weak Duality Hypothesis.- 7.1Weak duality hypothesis.- 7.2 Natural potential kernels and the Revuz correspondence.- 7.3 Smooth and cosmooth measures.- 7.4 Subordinate resolvents in weak duality.- 7.5 Semi-Dirichlet forms.- 7.6 Weak duality induced by a semi-Dirichlet form.- 7.7 Probabilistic interpretations: Multiplicative functionals in weak duality.- A Appendix.- A.1 Complements on measure theory, kernels, Choquet boundary and capacity.- A.2 Complements on right processes.- A.4 Basics on coercive closed bilinear forms.- Notes.

Recenzii

From the reviews:
"This book contains various topics on the general theory related to the analytic treatments of sub-Markovian resolvents, it will be a good reference for the specialists of the field. … In each chapter, after the analytic arguments of the topics of the chapter, related probabilistic results are stated." (Yoichi Oshima, Zentralblatt MATH, Vol. 1091 (17), 2006)
"In the book under review, starting from a given sub-Markovian resolvent kernel {Ua} on a Radon measure space E, the authors consider analytic counterparts of the probability topics in this general framework. The book contains various subjects on the general theory involving the analytic treatments of sub-Markovian resolvents; it will be a good reference for specialists in the field." (Yoichi Oshima, Mathematical Reviews, Issue 2007 a)